Real Numbers, Distributive Property, Simplifying Radicals and Pythagorean Theorem Test Study Guide

2.1: Use Integers and Rational Numbers

- Be able to classify numbers as whole, integer, rational and irrational using all names that apply

	Rational	Irrational	Integer	Whole
-5	Yes	No	Yes	No
0.6	Yes	No	No	No
175	Yes	No	Yes	Yes
$-\frac{26}{4}$	Yes	No	No	No
$0.6\overline{1}$	Yes	No	No	No
$\sqrt{18}$	No	Yes	No	No

^{*}don't forget that decimals that END or REPEAT are RATIONAL. It is possible for these types of decimals to be written as fractions.

- Be able to order numbers from least to greatest

Ex:
$$-\frac{1}{5}$$
, 6, -0.25 , $\sqrt{3}$
 -0.25 , $-\frac{1}{5}$, $\sqrt{3}$, 6

- Be able to find absolute value and opposites of numbers

Ex: Evaluate:
$$-x + |x|$$
 if $x = -0.75$
 $-(-.75) + 0.75 = 1.5$

^{*}Square roots of non-perfect squares, like square root of 18 are Irrational. They are never ending, never repeating decimals, which cannot be written as fractions.

2.5: Apply the Distributive Property

- Be able to use the distributive property and identify and combine like terms

Ex:
$$(p-3)(-8)$$

Ex:
$$3(m+5)-10$$

Ex:
$$6r - 2(r+4)$$

$$8p + 24$$

$$3m + 5$$

$$4r - 8$$

*don't forget to rewrite subtraction as adding the opposite prior to beginning each problem. This will help avoid sign errors.

- Be able to simplify division problems using the distributive property

Ex:
$$\frac{6x-14}{2}$$

Ex:
$$\frac{-24a-10}{-8}$$

Ex:
$$\frac{9z-6}{-3}$$

$$3x - 7$$

$$3a + \frac{5}{4}$$

$$-3z + 2$$

2.7: Find Square Roots and Compare Real Numbers

- Be able to evaluate square roots, estimate square roots and order square roots

Ex:
$$x^2 = 49$$

Ex: Estimate
$$-\sqrt{72}$$
 between 2 integers

$$x = \pm 7$$

$$-8$$
 and -9

*this is asking for ALL possible values x can be

Which are positive and negative.

11.2: Simplify Radical Expressions

- Be able to write radical expressions in simplest form, including rationalizing the denominator

Ex:
$$\sqrt{20} \cdot \sqrt{15}$$

Ex:
$$\sqrt{\frac{125}{4x^3}}$$

Ex:
$$\sqrt{27xy} \cdot \sqrt{5y^3}$$

$$\sqrt{300} = 10\sqrt{3}$$

$$\frac{5\sqrt{6x}}{2x^2}$$

$$3y^2\sqrt{15x}$$

- Be able to perform operations with radicals

Ex:
$$2\sqrt{7} + 4\sqrt{7}$$
 Ex: $5\sqrt{3} - 2\sqrt{10} + 4\sqrt{10} - 3\sqrt{3}$
$$2\sqrt{3} + 2\sqrt{10}$$

Ex:
$$8\sqrt{3}(1-\sqrt{3})$$
 Ex: $\sqrt{4}(3\sqrt{15}+\sqrt{5})$ Ex: $\sqrt{5}+5\sqrt{3}-2\sqrt{27}$ $8\sqrt{3}-24$ $3\sqrt{60}+\sqrt{20}$ $\sqrt{5}+5\sqrt{3}-6\sqrt{3}$ $12\sqrt{15}+2\sqrt{5}$ $\sqrt{5}-1\sqrt{3}$

11.4: Apply the Pythagorean Theorem

- Be able to use the Pythagorean Theorem to find missing sides of right triangles

Ex:
$$a = 30, b = 40$$

$$30^{2} + 40^{2} = c^{2}$$

$$900 + 1600 = c^{2}$$

$$2500 = c^{2}$$

$$50 = c$$
Ex: A leg: 15; Hypotenuse: 25
$$25^{2} + b^{2} = 25^{2}$$

$$225 + b^{2} = 625$$

$$b^{2} = 400$$

$$b = 20$$

- Be able to use the Pythagorean Theorem to decide if three sides could form a right triangle

Ex: 9, 15, 20

$$9^{2} + 15^{2} = 20^{2}$$

$$81 + 225 = 400$$

$$306 = 400$$
No
No
Ex: 12, 72, 71

$$12^{2} + 71^{2} = 72^{2}$$

$$144 + 5041 = 5184$$
No
No

- Use Pythagorean Theorem to solve real-world problems

Ex: The playing bed of a pool table is in the shape of a rectangle, which measures 154 inches by 20 inches. What is the length of the diagonal of the table? Round your answer to the nearest inch.

Solve a real-world distributive property problem.

You are making and selling friendship bracelets and necklaces. You want to sell 50 items in all, b of which are friendship bracelets. You are selling bracelets for \$2 and necklaces for \$3.

A) Write an expression to represent the total amount of money you will make. (You can only use one variable and you are still selling both items!)

$$2b + 3(50 - b)$$
$$2b + 150 - 3b$$
$$-1b + 150$$

B) How much money will you make if you sell 30 bracelets?

$$-1(30) + 150$$

 $-30 + 150$
 $\$120$

*You could also do 30.2 + 20.3 = 60 + 60 = \$120, but the fact that this comes out the same as plugging 30 into the expression means your expression is correct.