Real Numbers, Distributive Property, Simplifying Radicals and Pythagorean Theorem Test Study Guide

2.1: Use Integers and Rational Numbers

- Be able to classify numbers as whole, integer, rational and irrational using all names that apply

Ex: −7

Ex: $\sqrt{17}$

Ex: $\frac{1}{2}$

Integer, Rational

Irrational

Rational

- Be able to order numbers from least to greatest

Ex:
$$-\frac{1}{5}$$
,6,-0.25, $\sqrt{3}$

$$-0.25, -\frac{1}{5}, \sqrt{3}, 6$$

- Be able to find absolute value and opposites of numbers

Ex: Evaluate: -x + |x| if x = -0.75

$$-(-.75) + 0.75 = 1.5$$

2.5: Apply the Distributive Property

- Be able to use the distributive property and identify and combine like terms

Ex: (p-3)(-8)

Ex:
$$3(m+5)-10$$

Ex:
$$6r - 2(r+4)$$

$$8p + 24$$

$$3m + 5$$

$$4r - 8$$

- Be able to simplify division problems using the distributive property

Ex: $\frac{6x-14}{2}$

Ex: $\frac{-24a-10}{-8}$

Ex: $\frac{9z-6}{-3}$

3x - 7

$$3a + \frac{5}{4}$$

$$-3z + 2$$

2.7: Find Square Roots and Compare Real Numbers

- Be able to evaluate square roots, estimate square roots and order square roots

Ex:
$$x^2 = 49$$
 Ex: Estimate $-\sqrt{72}$ between 2 integers $x = \pm 7$ -8 and -9

11.2: Simplify Radical Expressions

- Be able to write radical expressions in simplest form, including rationalizing the denominator

Ex:
$$\sqrt{20} \cdot \sqrt{15}$$
 Ex: $\sqrt{\frac{125}{4x^3}}$ Ex: $\sqrt{27xy} \cdot \sqrt{5y^3}$
$$\sqrt{300} = 10\sqrt{3}$$

$$\frac{5\sqrt{6x}}{2x^2}$$

$$3y^2\sqrt{15x}$$

- Be able to perform operations with radicals

Ex:
$$(8\sqrt{3} + \sqrt{2})(1 - \sqrt{3})$$
 Ex: $(3\sqrt{12} + 5)^2$ Ex: $\sqrt{15} + 5\sqrt{3} - 2\sqrt{27}$ $8\sqrt{3} - 24 + \sqrt{2} - \sqrt{6}$ $(3\sqrt{12} + 5)(3\sqrt{12} + 5)$ $\sqrt{15} + 5\sqrt{3} - 6\sqrt{3}$ $108 + 15\sqrt{12} + 15\sqrt{12} + 25$ $\sqrt{15} - \sqrt{3}$ $133 + 30\sqrt{12}$ $133 + 60\sqrt{3}$

11.4: Apply the Pythagorean Theorem

- Be able to use the Pythagorean Theorem to find missing sides of right triangles

Ex:
$$a = 30, b = 40$$

$$30^{2} + 40^{2} = c^{2}$$

$$900 + 1600 = c^{2}$$

$$2500 = c^{2}$$

$$50 = c$$
Ex: A leg: 15; Hypotenuse: 25
$$15^{2} + b^{2} = 25^{2}$$

$$225 + b^{2} = 625$$

$$b^{2} = 400$$

$$b = 20$$

- Be able to use the Pythagorean Theorem to decide if three sides could form a right triangle

Ex: 9, 15, 20 **Ex:** 12, 72, 71

$$9^{2} + 15^{2} = 20^{2}$$

 $81 + 225 = 400$
 $306 = 400$
No

$$12^{2} + 71^{2} = 72^{2}$$

$$144 + 5041 = 5184$$

$$5185 = 5184$$
No

- Use Pythagorean Theorem to solve real-world problems

Ex: The playing bed of a pool table is in the shape of a rectangle, which measures 154 inches by 20 inches. What is the length of the diagonal of the table? Round your answer to the nearest inch.

Diagonal: 155.3 inches