Name			

Water Properties Investigation

Activity	1.	Drops on	а	Penny
2 1 C 1 1 V 1 1 V	1.	DIODS OIL	u	1 6/1/1/1

Question: How will different additives affect hydrogen bonds between water molecules?

Materials: Penny, distilled water, pipettes, paper towel, various solutions

Null hypothesis:

Alternative hypothesis:

Prediction:

Procedure:

- 1. Obtain a dry penny and place it on a dry paper towel.
- 2. Using a clean pipette, add distilled water to the penny drop by drop until it overflows. **Be sure to count the drops!**
- 3. Record the number of drops for Trial 1 in Data Table 1 below.
- 4. Repeat steps 1-2 for a total of five trials with distilled water.
- 5. Repeat procedure with the other solutions (as shown in the data table below).

Data:

Data Table 1: Number of Drops of Distilled Water Contained on the Surface of a Penny

Trial	# Drops: Distilled Water	# Drops: Distilled Water + Soap	# Drops: Distilled Water + Sugar	# Drops: Oil
1				
2				
3				
4				
5				
Average				

Observations: Side of penny with water		
Side of penny with soap solution	Side of penny with sugar solution	Side of penny with oil
Activity 2: Water on Glass vs. Wax		
Materials: wax paper, glass slide, pipette	e, tap water	
Procedure: Drop two drops of water on	the glass slide and on the wax paper and compa	are what happens.
Data: Draw what happened: glass sl	lide wax	paper

Name				

Activity 3: Dancing Milk

Materials: petri dish, whole milk, graduated cylinder, dish detergent, food coloring, Q-tips

Procedure:

- 1. Measure as close to 50 ml of whole milk as possible into the petri dish.
- 2. Place one drop of three different colors of food coloring in three separate areas of the petri dish. DO NOT BUMP THE PETRI DISH OR THE MILK.
- 3. Smother one end of the Q-tip in dish detergent.
- 4. Put the soapy end of the Q-tip in the middle of one of the drops of food coloring. Then pick up the Q-tip and move it to another drop.

1	1		
()	bser	Watı	anc.
$\mathbf{\circ}$	osci	v au	OHS

Activity 4: Lava Lamp Cylinders

Materials: 10 ml graduated cylinder, water, oil, food coloring, stirring rod

Procedure:

- 1. Pour 8 ml of oil into the graduated cylinder.
- 2. Drop 2 ml of water on top of the oil.
- 3. Add 2 drops of food coloring to the water.
- 4. Use a stirring rod to push the food coloring into the oil by moving the rod up and down throughout the whole of the graduated cylinder.

Observations:

Analysis:

Activity 1: Drops on a Penny

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

$$SE_{\bar{x}} = \frac{S}{\sqrt{n}}$$

Data Table 2: Statistical Analysis of the Number of Drops of Distilled Water Contained on the Surface of a Penny

Calculation	Distilled	Distilled Water +	Distilled Water +	Oil
	Water	Soap	Sugar	
Mean				
Standard Deviation				
Standard Error				
+/- 2 SEM				

Name			

Create an appropriately labeled bar graph to illustrate the sample means for the penny within 95% confidence (+/-2 SEM). <u>Don't forget a title that includes the independent and dependent variables and axes labels with units.</u>

Make a CLAIM about how additives affect hydrogen bonds between water molecules.

Using data from activity #1, provide EVIDENCE that supports the claim.

Using background knowledge and data from this lab, provide REASONING that uses the evidence to justify the claim.

Explain your results in Activity 2 in terms of adhesion and hydrogen bonding.

Explain your results in Activity 3 and 4 in terms of amphipathic molecules and hydrophobic and hydrophobic and/or polar and nonpolar.