EC	051	YS 1	EΛ	15
	\mathbf{U}			$\cdot \cdot \cdot$

Name:	

Hour:

				1	2					3				
	4					5								
6		7								8				
								9						
		10			11									
12														13
12														13
					14								15	
	16													
			17						18					
		19												
20							21							
		22												
							23							
24														

Across

- 2 A hawk, who ate a snake that ate a mouse, would be what type of consumer? (8)
- 7 An organism which must obtain their energy from eating a producer or other heterotroph. (8)

Down

- 1 Biological illustrates how toxins can amplify their affects as they move through a food chain (13)
- 3 Photosynthesis and _____ are the chemical processes that drive the Carbon Cycle (11)

- **8** A diagram that displays how energy is transferred from one level to another higher level (7)
- 10 The evaporation of water in plants through openings in their stomates (like pores) (13)
- 12 The product of condensation; such as rain, sleet or snow (13)
- **14** Occurs when water is converted from a liquis to a gaseous state (11)
- 17 Term used to describe all organisms who must feed on other organisms to acquire energy (11)
- 20 A food _____ is a visual map showing the network of interactions within a community and multiple food chains (3)
- 21 When water is converted from a gaseous state to a liquid state (12)
- 22 An organism which can create and store their own energy; usually from sunlight (8)
- 23 The total organic mass at any given trophic level (7)
- 24 Type of consumer that only feeds on meat (9)

- 4 A heterotroph that breaks down dead plants and animals (10)
- 5 The process where forms of nitrogen which are toxic to plants are converted into safe, usuable forms (15)
- 6 Term used to describe all organisms that can produce their own food through photosynthesis or chemically (9)
- 9 A food _____ illustrates how organisms consume one another to acquire energy (5)
- 11 Type of consumer that feeds upon previously killed animals (9)
- 13 Energy from the carbon cycle are stored in forms such as fossil fuels and . (9)
- 15 Nitrogen ______ is the process where nitrogen is transformed from the atmosphere into a usuable form for plants to absorb (8)
- **16** Type of consumer that only eats plants (9)
- **18** Type of consumer that eats both plants and animals (8)
- 19 A _____level illustrates how much energy is available for transfer to a higher level; usually 10% (7)
- 21 When sugars are broken down for energy, they return to the atrmosphere as dioxide (6)