- 1. Which phase change is exothermic?
 - A) $NH_3(g) \rightarrow NH_3(l)$
- B) $CO_2(s) \rightarrow CO_2(g)$
- C) $H_2O(s) \rightarrow H_2O(1)$
- D) $H_2S(1) \rightarrow H_2S(g)$
- E) $HF(1) \rightarrow HF(g)$
- 2. When a substance dissolves in water, the temperature of the water decreases. This process is
 - A) exothermic, with a release of energy
 - B) endothermic, with a release of energy
 - C) exothermic, with an absorption of energy
 - D) endothermic, with an absorption of energy
 - E) isothermic, with an increase in total energy
- 3. I. Heat is released with an endothermic reaction

BECAUSE

- II. energy is released when bonds are formed.
- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I
- 4. I. An exothermic reaction always has a negative ΔG

BECAUSE

- II. heat is released when the reaction occurs.
- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I

5. I. An endothermic reaction always has a positive ΔG

BECAUSE

- II. heat is released when the reaction occurs.
- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I
- 6. I. A positive ΔS represents a decrease in potential energy

BECAUSE

- II. ΔS represents the difference in the entropy of the products and the reactants.
- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I
- 7. I. A positive ΔS tells you that the reaction must be spontaneous

BECAUSE

- II. entropy always increases when a reaction occurs.
- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I

8. I. A positive ΔH tells you that the reaction is exothermic

BECAUSE

II. with a positive ΔH , the products have more energy than the reactants.

- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I
- 9. I. The activation energy of an exothermic reaction is always less than that of the reverse reaction

BECAUSE

II. the products have more energy than the reactants.

- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I
- 10. I. When propane is burned in air, energy is absorbed

BECAUSE

II. the reaction is exothermic.

- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I

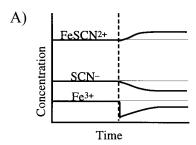
11. Which will increase the concentration of gaseous carbon dioxide in the phase equilibrium reaction?

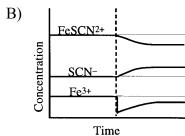
$$CO_2(s) \leftrightarrow CO_2(g)$$

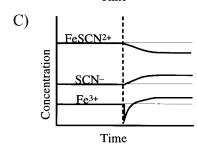
- A) Add dry ice, CO₂(s)
- B) Increase the volume
- C) Increase the pressure
- D) Add an inert gas
- E) Decrease the temperature
- 12. When a catalyst is added to a reaction at equilibrium, which of the following does not occur?
 - A) the activated complex of the reaction becomes more energetically favorable
 - B) the enthalpy of the reaction remains the same
 - C) the rate of the forward reaction increases
 - D) the rate of the reverse reaction increases
 - E) the equilibrium shifts to the side with greater entropy
- 13. Base your answer to the following question on the equation and the choices provided.

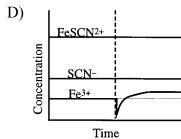
$$CN^{-}(aq) + H_2O(1) \leftrightarrow HCN(aq) + OH^{-}(aq)$$

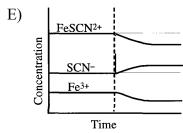
- (A) increases
- (B) decreases
- (C) remains the same
- (D) increases, then decreases
- (E) decreases, then increases


If a catalyst is added, the [OH-]


A) A B) B C) C D) D E) E


14. Base your answer to the following question on Given the system at equilibrium:


$$Fe^{3+}(aq) + SCN^{-}(aq) \leftrightarrow FeSCN^{2+}(aq)$$


What happens to the concentrations of the three ions when some Fe³⁺ ion is removed by precipitation from this aqueous solution, with the temperature remaining constant?

15. Consider the system in equilibrium

$$2 SO_2(g) + O_2(g) \leftrightarrow 2 SO_3(g) + heat$$

What can be done to increase the quantity of SO₃(g)?

- A) Introduce a catalyst
- B) Increase the pressure on the system
- C) Decrease the concentration of $O_2(g)$
- D) Decrease the concentration of SO₂(g)
- E) Increase the temperature of the system

Base your answers to questions 16 through 20 on the equation and the answers provided.

20 HNO₃(aq) + 3 P₄(s) + 8 H₂O(1) + Heat
$$\leftrightarrow$$

12 H₃PO₄(aq) + 20 NO(g)

- (A) increases
- (B) decreases
- (C) remains the same
- (D) increases, then decreases
- (E) decreases, then increases
- 16. If some P₄ is added, the [H₂O]
 - A) A
- B) B
- C) C
- D) D
- E) E
- 17. If more HNO₃ is added, the [H₃PO₄]
 - A) A
- B) B
- C) C
- D) D
- E) E
- 18. If a little H₂O is added, the [H₃PO₄]
 - A) A
- B) B
- C) C
- D) D
- E) E
- 19. If the pressure is increased, the [HNO₃]
 - A) A
- B) B
- C) C
- D) D
- E) E
- 20. If temperature is decreased, the [NO]
 - A) A
- B) B
- C) C
- D) D
- E) E

Base your answers to questions 21 th	rough 26 on the
equation and the answers provided.	

$$4 \text{ NO(g)} + 3 \text{ O}_2(g) \leftrightarrow 2 \text{ N}_2\text{O}_5(g) + \text{Heat}$$

- (A) increases
- (B) decreases
- (C) remains the same
- (D) increases, then decreases
- (E) decreases, then increases
- 21. If some N₂O₅ is removed, the [N₂O₅]
 - A) A
- B) B
- C) C
- D) D
- E) E
- 22. If some NO is added, the [O₂]
 - A) A
- B) B
- C) C
- D) D
- E) E
- 23. If some O₂ is added, the [O₂]
 - A) A
- B) B
- C) C
- D) D
- E) E
- 24. If the pressure is decreased, the [O₂]
 - A) A
- B) B
- C) C
- D) D
- E) E
- 25. If temperature is decreased, the Keq
 - A) A
- B) B
- C) C
- D) D
- E) E
- 26. If temperature is increased, the [N₂O₅]
 - A) A
- B) B
- C) C
- D) D
- E) E

Base your answers to questions 27 through 30 on the equation and the choices provided.

$$CaCO_3(s) + Heat \leftrightarrow CaO(s) + CO_2(g)$$

- (A) increases
- (B) decreases
- (C) remains the same
- (D) increases, then decreases
- (E) decreases, then increases
- 27. If the pressure is decreased, the [CO₂]
- A) A
- B) B
- C) C
- D) D
- E) E
- 28. If the temperature is decreased, the Keq
- A) A
- B) B
- C) C
- D) D
- E) E
- 29. If temperature is decreased, the [CO₂]
 - A) A
- B) B
- C) C
- D) D
- E) E
- 30. If temperature is increased, the [CaO]
 - A) A
- B) B
- C) C
- D) D
- E) E

- 31. What the equilibrium law expression for:
 - $20 \text{ HNO}_3(\text{aq}) + 3 P_4(\text{s}) + 8 H_2O(\ell) + \text{Heat} \leftrightarrow$
 - $12 \text{ H}_3 \text{PO}_4(\text{aq}) + 20 \text{ NO(g)}$

 - A) $K = \frac{[H_3PO_4][NO]}{[HNO_3][P_4][H_2O]}$ B) $K = \frac{[H_3PO_4]^{12}[NO]^{20}}{[HNO_3]^{20}[P_4]^3[H_2O]^8}$
 - C) $K = \frac{[2 \text{ HNO}_3]^{20} [P_4]^3 [H_2 O]^8}{[H_3 PO_4]^{12} [2 \text{ NO}]^{20}}$
 - D) $K = \frac{[H_3PO_4]^{12}[NO]^{20}}{[HNO_3]^{20}}$
 - E) $K = \frac{[12 \text{ H}_3\text{PO}_4][20 \text{ NO}]^8}{[20 \text{ H}\text{NO}_3]^3[P_4]^{20}[\text{H}_2\text{O}]^{20}}$
- 32. What is the equilibrium law expression for:
 - $4 \text{ NO(g)} + 3 \text{ O}_2(g) \leftrightarrow 2 \text{ N}_2\text{O}_5(g) + \text{Heat}$
 - A) $K = \frac{[2 N_2 O_5]}{[4 NO][3 O_2]}$

 - B) $K = \frac{[2 \text{ N}_2 \text{O}_5][\text{Heat}]}{[4 \text{ NO}][3 \text{ O}_2]}$ C) $K = \frac{[\text{N}_2 \text{O}_5]^2}{[\text{NO}]^4 [\text{O}_2]^3}$

 - D) $K = \frac{[N_2O_5]^2[Heat]}{[NO]^4[O_2]^3}$ E) $K = \frac{[3 O_2][Heat]}{[NO]^4[2 N_2O_5]}$
- 33. What is the equilibrium law expression for

$$N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g) + 22 kcal$$

- A) $K = \frac{[NH_3]}{[N_2][H_2]}$ B) $K = \frac{[NH_3]^2}{[N_2][H_2]^3}$ C) $K = \frac{[2 NH_3]}{[N_2][3 H_2]}$ D) $K = \frac{[N_2][H_2]^3}{[NH_3]^2}$
- E) $K = \frac{[N_2]^2}{[H_2][NH_2]^3}$

34. What is the equilibrium law expression for

$$CaCO_3(s) + Heat \leftrightarrow CaO(s) + CO_2(g)$$

$$\begin{split} ^{A)} \ \mathrm{K} &= \frac{[\mathrm{CaCO_3}]}{[\mathrm{CaO}][\mathrm{CO_2}]} \\ ^{B)} \ \mathrm{K} &= \frac{[\mathrm{CaO}][\mathrm{CO_2}]}{[\mathrm{CaCO_3}]} \end{split}$$

B)
$$K = \frac{[CaO][CO_2]}{[CaCO_3]}$$

C)
$$K = [CO_2]$$

D)
$$K = \frac{1}{[CO_2]}$$

D)
$$K = \frac{1}{[CO_2]}$$

E) $K = \frac{[CO_2]^2}{[CaO]}$

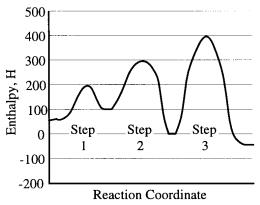
35. Which expression correctly represents the solubility product constant, $K_{\rm SD}$, for manganese(II) oxalate, MnC_2O_4 ?

$$\operatorname{MnC}_2\operatorname{O}_4(s) \leftrightarrow \operatorname{Mn}^{2+}(\operatorname{aq}) + \operatorname{C}_2\operatorname{O}_4^{2-}(\operatorname{aq})$$

A)
$$K_{sp} = \frac{[Mn^{2+}][C_2O_4^{2-}]}{[MnC_2O_4]}$$

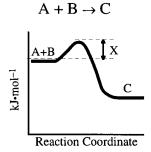
$$\begin{split} & ^{A)} \ K_{sp} = \frac{[Mn^{2+}][C_2O_4^{2-}]}{[MnC_2O_4]} \\ & ^{B)} \ K_{sp} = \frac{[MnC_2O_4]}{[Mn^{2+}][C_2O_4^{2-}]} \end{split}$$

C)
$$K_{sp} = [Mn^{2+}][C_2O_4^{2-}]$$


C)
$$K_{sp} = [Mn^{2+}][C_2O_4^{2-}]$$

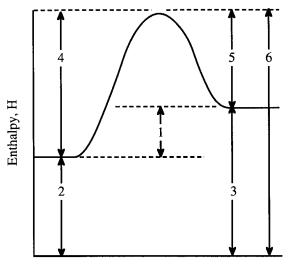
D) $K_{sp} = \frac{1}{[Mn^{2+}][C_2O_4^{2-}]}$

E)
$$K_{sp} = \frac{[C_2 O_4^{2-}]}{[Mn^{2+}]}$$


- 36. The activation energy of a reaction may be defined qualitatively as the
 - A) Energy supplied by the catalyst
 - B) Energy required by the reactant molecules to react
 - C) Heat content of the products minus that of the reactants
 - D) Energy supplied by the attractive forces between molecules
 - E) Heat content of the products plus the potential energy of the products

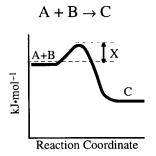
- 37. A catalyst increases the rate of reaction by
 - A) decreasing the heat of reaction.
 - B) decreasing the activation energy.
 - C) increasing the energy of the products.
 - D) increasing the value of the equilibrium constant.
 - E) increasing the potential energy of the reactants.

Base your answers to questions 38 and 39 on the graph below showing the energy during a catalyzed reaction.



- 38. The heat of reaction for Step #3 is:
 - A) -450 B) -50
- C) +50
- D) +100 E) +400
- 39. The heat of reaction for the overall reaction is:
 - A) -100 B) -50
- C) +50
- D) +100 E) +400
- 40. Which reaction characteristic is shown by the potential energy diagram?

- A) slow
- B) rapid
- C) equilibrium
- D) exothermic
- E) endothermic


Base your answers to questions **41** through **44** on the diagram shown below.

Reaction Coordinate

- 41. The reaction diagrammed has a ΔH which is
 - A) negative and exothermic
 - B) positive and exothermic
 - C) positive and endothermic
 - D) negative and endothermic
 - E) Unable to be determined from the information given
- 42. The *least* stable species in this diagram is the
 - A) reactants
 - B) products
 - C) exothermic reaction
 - D) endothermic reaction
 - E) activated complex
- 43. The products have a total energy represented by number
 - A) 6
- B) 2
- C) 3
- D) 4
- E) 5
- 44. Which represents the energy of the activated complex?
 - A) 6
- B) 2
- C) 3
- D) 4
- E) 5
- 45. Which best describes the role of catalysts in chemical reactions? Catalysts
 - A) are consumed as they speed up the reaction rate
 - B) do not take part in the reaction; they only speed up the rate
 - C) main function is to provide a surface for the reaction to occur
 - D) are both consumed and regenerated while speeding up the reaction rate
 - E) increase the activation energy of the reaction

- 46. A catalyst increases the rate of reaction by
 - A) decreasing the heat of reaction
 - B) decreasing the activation energy
 - C) increasing the energy of the products
 - D) increasing the value of the equilibrium constant
 - E) increasing the number of collisions
- 47. How is the interval "X" changed in the potential energy diagram?

- A) Change the volume
- B) Introduce a catalyst
- C) Increase the pressure
- D) Decrease the temperature
- E) Add more of substance A
- 48. Given the reaction $H_2(g) + I_2(g) + \text{heat} \leftrightarrow 2 \text{ HI}(g)$, what effect will increasing the pressure have?
 - A) increase the [H₂]
- B) increase the [I₂]
- C) increase the [HI]
- D) decrease the [HI]
- E) none of the above
- 49. When a reactant is added to a reaction at equilibrium, the equilibrium shifts towards the product side. Which of the following best describes this phenomenon?
 - A) Graham's law
 - B) the second law of thermodynamics
 - C) Gibb's free energy
 - D) collision theory of reaction rates
 - E) Boyle's law
- 50. Why does increased concentration increase reaction rate?
 - A) Increased activation energy
 - B) Increased number of collisions
 - C) Increased average kinetic energy
 - D) Increased energy for effective collisions
 - E) Increased energy of reactants

51. Consider the reaction between BaCO₃ and an acid.

BaCO₃(s) + 2 H⁺(aq)
$$\rightarrow$$

Ba²⁺(aq) + H₂O(l) + CO₂(g) + Heat

Which will increase the rate of evolution of carbon dioxide?

- A) Adding water to the system
- B) Decreasing the temperature
- C) Using finely powdered BaCO₃
- D) Increasing the barium ion concentration, [Ba²⁺]
- E) Using H₂(g) instead of H⁺(aq)
- 52. Consider the two reactions:

(I)
$$Ag^+(aq) + I^-(aq) \rightarrow AgI(s)$$

(II)
$$4 \operatorname{Fe}(s) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{Fe}_2\operatorname{O}_3(s)$$

Which statement best describes the relative rates of the two reactions?

- A) I is faster than II
- B) II is faster than I
- C) I and II are both fast
- D) I and II are both slow
- E) I and II are exactly the same
- 53. Consider the two reactions:

(I)
$$4 \text{ Al(s)} + 3 \text{ O}_2(g) \rightarrow 2 \text{ Al}_2\text{O}_3(s)$$

(II)
$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$$

Which statement best describes the relative rates of the two reactions?

- A) I is faster than II
- B) II is faster than I
- C) I and II are both fast
- D) I and II are both slow
- E) I and II are exactly the same
- 54. Increasing the temperature increases the reaction rate. This is best explained by a(n)
 - A) new reaction path.
 - B) higher activation energy.
 - C) increased concentration of reactants.
 - D) increased number of effective collisions.
 - E) increase in the potential energy of the reactants.

Base your answers to questions 55 through 57 on the rate law given below for the reaction $A + B + C \rightarrow D$.

Rate =
$$k[A]^2[B][C]$$

- 55. If the concentration of B is decreased, what will happen?
 - A) Both [A] and [C] will increase.
 - B) Both [A] and [C] will decrease.
 - C) [A] will decrease and [C] will increase.
 - D) [A] will increase and [C] will decrease.
 - E) Both [A] and [C] will stay the same.
- 56. If the concentration of C is doubled what will happen?
 - A) The rate of the reaction increases
 - B) The rate of the reaction decreases
 - C) The value of the equilbrium constant increases
 - D) The value of the equilibrium constant decreases
 - E) Neither the equilibrium constant nor the rate would change.
- 57. If [A] is doubled and [B] tripled, by what factor would the rate change?
 - A) 2 B) 3 C) 6 D) 12
- 58. Which is the value for the enthalpy change, ΔH , for this reaction in kJ?

$$CuS(s) + 2 O_2(g) \rightarrow CuSO_4(g) + 721 \text{ kJ}$$

E) 18

- A) 0.00 B) -721 C) +721 D) +770 E) -770
- 59. Which is true for exothermic reactions?
 - A) Increasing enthalpy, increased stability, increased energy.
 - B) Increasing enthalpy, decreased stability, increased energy.
 - C) Decreasing enthalpy, increased stability, decreased energy.
 - D) Decreasing enthalpy, decreased stability, decreased energy.
 - E) Decreasing enthalpy, increased stability, increased energy.
- 60. The heats of formation of O2(g), P4(s) and Na(s) are all
 - A) zero
- B) large
- C) small
- D) given in the table
- E) unknown

61. What is the enthalpy change, ΔH , of the following reaction in kJ?

$$SO_2(g) + \frac{1}{2} O_2(g) \rightarrow SO_3(g) + 98.49 \text{ kJ}$$

- A) 0.00 kJ
- B) -98.49 kJ
- C) -49.25 kJ
- D) +49.25 kJ
- E) +98.49 kJ
- 62. Bond breaking is
 - A) exothermic and absorbs energy
 - B) exothermic and evolves energy
 - C) endothermic and absorbs energy
 - D) endothermic and evolves energy
 - E) either endothermic or exothermic
- 63. Consider the reaction:

$$H_2 + Cl_2 \rightarrow 2 HCl + Energy$$

The equation indicates that the reaction described is

- A) very slow
- B) impossible
- C) exothermic
- D) endothermic
- E) very fast
- 64. Consider the equation:

$$2 \text{ Al(s)} + \text{Fe}_2\text{O}_3 \text{ (s)} \rightarrow 2 \text{ Fe}(\text{s)} + \text{Al}_2\text{O}_3 \text{ (s)} + 400 \text{ kJ}$$

How many grams of aluminum react to produce 40 kJ of heat?

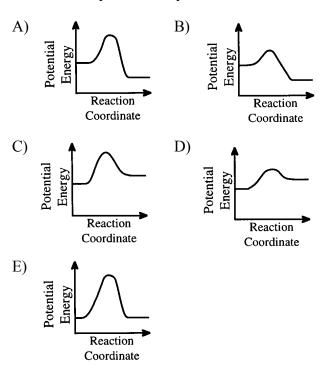
- A) 2.7 g B) 5.4 g C) 9.0 g D) 27 g

- 65. Which change is accompanied by an increase in entropy?
 - A) $H_2O(1) \rightarrow H_2O(s)$
- B) $H_2O(g) \rightarrow H_2O(s)$
- C) $H_2O(1) \rightarrow H_2O(g)$
- D) $H_2O(g) \rightarrow H_2O(1)$
- E) $H_2O(aq) \rightarrow H_2O(s)$
- 66. In the reaction

$$A(s) + B(s) \rightarrow C(g) + D(g) + heat$$

the entropy of the system

- A) increases and the reaction is exothermic.
- B) decreases and the reaction is exothermic.
- C) increases and the reaction is endothermic.
- D) decreases and the reaction is endothermic.
- E) either increases or decreases depending on the temperature.


67. Calcium carbonate, CaCO₃, decomposes according to the reaction

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$
.

The entropy change, ΔS° , of this system:

- A) always decreases
- B) always increases
- C) remains the same
- D) increases at high temperatures only
- E) decreases at high temperatures only
- 68. Endothermic reactions can occur spontaneously when the free energy, ΔG , of the system:
 - A) decreases
 - B) increases
 - C) remains the same
 - D) either increases or decreases
 - E) it cannot be determined from the information given
- 69. In a system at equilibrium, the free energy change, Δ G°, is
 - A) always zero
 - B) always a positive value
 - C) always a negative value
 - D) either a negative or a positive value
 - E) dependent on the states of the reactants
- 70. Free energy is a measure of
 - A) chaos
- B) kinetic energy
- C) heat flow
- D) potential energy
- E) net driving force
- 71. When the temperature change of a system is low, the reaction generally proceeds as predicted by the enthalpy change (ΔH) because
 - A) ΔS is negative
 - B) the product $T\Delta S$ is equal to ΔH
 - C) the product $T\Delta S$ is small compared to ΔH
 - D) the product $T\Delta S$ is large compared to ΔH
 - E) ΔS is positive

- 72. When solid ammonium chloride, NH₄Cl, is dissolved in a beaker of water, the temperature of the water *decreases*. The reaction occurring in the beaker
 - A) is exothermic and spontaneous
 - B) is endothermic and spontaneous
 - C) is exothermic and nonspontaneous
 - D) is endothermic and nonspontaneous
 - E) could be either exothermic or endothermic
- 73. Four reactions are represented by the reaction diagrams shown at the same scale. Which exothermic reaction occurs most spontaneously?

74. I. Increasing the temperature increases the rate of a chemical reaction

BECAUSE

- II. the activation energy is lowered.
- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I

75. I. When the pressure on a reaction at equilibrium is increased, the equilibrium will always shift to the products

BECAUSE

- II. the available volume decreases.
- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I
- 76. I. Exothermic reactions are always spontaneous

BECAUSE

- II. spontaneous reactions have a negative ΔG .
- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I
- 77. I. Increasing the pressure on gaseous reactants will increase the rate of a reaction

BECAUSE

- II. the equilibrium shifts to the smaller gas volume.
- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I

78. I. A positive ΔG signifies an endothermic reaction

BECAUSE

II. the reaction is not spontaneous..

- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I

79. I. Powdered aluminum reacts at a slower rate than aluminum strips

BECAUSE

II. powdered aluminum has a decreased surface area.

- A) I is TRUE, II is FALSE
- B) I is FALSE, II is TRUE
- C) I and II are BOTH FALSE
- D) I and II are *BOTH TRUE* but II *IS NOT* a correct explanation of I
- E) I and II are *BOTH TRUE* and II *IS* a correct explanation of I
- 80. In the reaction:

$$A(g) + B(g) + heat \rightarrow C(s) + D(l)$$

the entropy change, ΔS , of the system:

- A) decreases under any conditions
- B) increases under any conditions
- C) remains the same
- D) decreases at high pressures only
- E) increases at high temperatures only