FOCUS IN ACTION

Grade 9 Science Focus

Unit A - Biological Diversity

'Focus in Action' UNIT LEARNING PACKS

These booklets are designed to provide Grade 9 students with all the resources needed to review or reinforce concepts, covered in the Alberta Science Curriculum, and included in the Grade 9 Science Final Exam in June. There are circumstances in which **an entire unit** may be missed and covering the concepts from that unit (for the final exam) can be difficult. This can happen for a number of reasons:

- Students new to the school register throughout the year (from other provinces, school jurisdictions or countries)
- Students may be ill or have surgery and often can miss one or more units
- Students have extended holidays throughout the year
- Transfers from another school, who have completed the units in a different order

For additional support, students are directed to the **Edquest Middle School Science Website** or, Scienceman Resource (www.scienceman.com/scienceinaction/pgs/hot_8u1.html)

Unit 1 – Biological Diversity

- Topic 1 Notes & Quiz
- Topic 2 Notes & Quiz
- Topic 3 Notes & Quiz
- Topic 4 Notes & Quiz
- Topic 5 Notes & Quiz
- Topic 6 Notes & Quiz
- Topic 7 Notes & Quiz
- Topic 8 Notes & Quiz
- Unit Summary
- Review Booklet

(Covered in class, prior to the Final Achievement Exam)

- Unit Test
- Answer Key for Section Quizzes and Unit Test

Additional support will be provided, in the form of practice Achievement Test Questions, during the course review in June. Multiple Choice Questions and Numerical Response Questions will be reviewed, as these are the types that will make up the Alberta Science 9 Final Achievement Exam.

Handouts and other activities, to reinforce the concepts covered in this Unit, will be made available based on need. If you require further information or resources, email Edquest directly: edquest@gmail.com.

Finding Solutions to Problems, instead of Making Excuses

Student Instructions for use of this Learning Pack

The purpose of this Learning Unit Pack is to provide you with the resources that will help you cover the material from the curriculum that will be tested on the Final Exam in June. Follow these steps to successfully complete this Unit Learning Pack:

- Step 1 Read the Topic Notes
- **Step 2** Use a **highlighter** to identify the key words or phrases in the Topic Notes and reread the material again paying close attention to those words that you highlighted. If necessary, modify your highlights to make sure you understand the material in the notes.
- Step 3 Complete the Topic Quiz
- **Step 4** Correct the Topic Quiz by **checking the answers** in the back of this Learning Pack.
- **Step 5** Using your **textbook** and the **completed quiz**, find the page where the question and correct answer can be found and write it next to the question number in your Learning Pack.
- Step 6 Repeat Steps 1-5 for each of the other Topics in this Unit.
- **Step 7** Look over the **Unit Outline** to review the **Key Concepts** once you have completed all of the Topics.
- **Step 8** Complete the **Unit Review**, using your **Learning Pack** and **Textbook**.
- **Step 9 Highlight** those sections of the Review that you had difficulty with and review those sections with your teacher prior to taking the Unit Test.
- **Step 10** Take the **Unit Test** and correct it using the answer key provided in the back of the Learning Pack.
- **Step 11** You should now be ready to answer any questions on the **Final Exam** related to this Unit.

Anything you still do not understand should be discussed with your teacher. Congratulations on your **Independent Study**, and Good Luck on the Final Exam. I hope you have made good use of this resource. Please provide feedback to your teacher, so that this resource can be improved.

Additional support is available in the form of practice Achievement Test Questions. **Multiple Choice Questions** and **Numerical Response Questions** will be made available on request, as these are the types that will make up the **Alberta Science 9 Achievement Exam**.

Handouts and other activities, to reinforce the concepts covered in this Unit may be acquired by visiting the Edquest Middle School Science Resource Website

http://www.edquest.ca

Topic 1 - Biological Diversity and Survival

The entire collection of living organisms, each with their own unique characteristics, makes up the Earth's biodiversity. **Biological diversity** refers to the number and variety of species and ecosystems on the Earth and the ecological processes of they are a part of.

A Wealth of Diversity

Interdependence of many different species stresses the need to protect what species we currently have on the Earth.

A **species** is a particular group of organisms that have the same structure and can reproduce with each other. Of the 30-100 million possible different species of living things, there are over 1.5 million species of animals and 350.000 species of plants that have been identified by biologists.

The most successful life form seems to be the insect. There are many different species that can potentially help other species, like the Pacific Yew tree, by producing medicines. Biological diversity is important for the health and survival of natural communities.

Taxol, found to be effective in controlling different types of cancers, is extracted from the bark of the Pacific Yew tree.

The **main components of biodiversity** include:

- Ecosystem diversity the different types of living communities and the environments, such as marshes, lakes, streams and forests, in which they are found
- Community (populations of different species living in the same area) diversity occurs within
 populations (members of a species that live in a specific area and share the same resources) of
 organisms living within a particular ecosystem
- Species diversity occurs within individual organisms of the same species
- Genetic diversity occurs within organisms at a cellular level, as it describes the variety of genetic material in all living things.
- Species Distribution Plant and animal species are not distributed evenly throughout the various eco-regions of the world. Most of the different species of plants and animals can be found in tropical regions and, more specifically, in the rainforests. As you move closer to the poles of the Earth, there is less biological diversity.

Variations for Survival

Every organism needs to adapt in order to survive in its environment. There are two types of adaptations. Physical features of an organism are structural adaptations, whereas, actions are behavioral adaptations.

The Value of Variation

Having variation in an ecosystem enables some of the organisms in that ecosystem to survive because of their higher level of resistance and survival adaptations, when certain species die off. This is important in order to maintain the ecosystem. Sacrificing one part of the ecosystem to save the main parts is also necessary sometimes. This is why foresters might decide to burn one part of a forest to save the part of the forest that they know will be able to survive other factors that are threatening to destroy the entire forest.

Mountain Pine Beetle

Destroys pine trees by spreading a bluestain fungal disease as it bores through the tree.

Measuring Biological Diversity

To determine the biological diversity of an area, biologists use a measurement called a diversity index. This compares the diversity of species in a certain area with the total number of organisms in that same area, or ecosystem. It is primarily used to check on the health of an ecosystem – a healthy ecosystem has a high diversity index.

Topic 1 - Biological Diversity and Survival

- 1. The number and variety of species and ecosystems on the Earth and the ecological processes of they are a part of refers to ...
 - A. genetics
 - B. variability
 - C. biological diversity
 - D. ecosystem speciation
- 2. The most successful life form seems to be the insect. It is a **species** a particular group of organisms that have the same structure and can...
 - A. have the same predators
 - B. consume the same food supply
 - C. live in the same area
 - D. reproduce with each other
- 3. There are many different species that can potentially help other species, like the Pacific Yew tree, by producing cancer treatment medicine which is extracted from its bark, called ...
 - A. Taxol
 - B. Aspirin
 - C. Tylenol
 - D. Motrin
- 4. The main components of biodiversity occurring within organisms at a cellular level, as it describes the variety of life producing material carrying the variation information in all living things is called ...
 - A. Ecosystem diversity
 - B. Community diversity
 - C. Species diversity
 - D. Genetic diversity
- 5. Every organism needs to adapt in order to survive in its environment. There are two types of adaptations -structural and behavioral. Which of the following is a structural adaptation?
 - A. feathers
 - B. predation
 - C. migration
 - D. hibernation
- 6. Foresters might decide to burn one part of a forest because...
 - A. disease is likely to kill off all the trees in the forest, so they give nature a helping hand
 - B. sacrificing one part of the ecosystem to save the main parts is also necessary sometimes
 - C. habitat is increasing to such an extent that some forest species have to be displaced
 - D. interspecies reproduction might destroy the natural forest ecosystem balance
- This compares kinds of species in a certain area with the total number of organisms in that same area, or ecosystem. It is primarily used to check on the health of an ecosystem – a healthy ecosystem has a
 - A. low diversity index
 - B. high diversity index
 - C. high variation level
 - D. low variation level

Topic 2 - Habitat and Lifestyle

The Niche: What Makes an Organism Special?

A niche is the role an organism has within a particular ecosystem. An organism's niche includes:

- What it eats
- What eats it
- Its habitat
- Nesting site, range and habits
- What effect it has on the other populations
- What effect it has on the environment

A niche, for a particular organism, can change, depending on the environment in which it is located and the organisms with which it inter-relates.

Variation and Competition

When basic need resources (food, water, sunlight, habitat) are not plentiful, different species compete for the resource. This competition is often not fair – because one species may have a specific variation which will give it an advantage over other species. Adaptations play an important role when competition occurs, because the species that is best suited to survive will. The species who does not 'win' the resource will likely have to switch to a different, less desirable resource in order to survive.

Some species, like warblers, visit Alberta spruce forests and avoid direct competition for the same resource, by practicing resource partitioning. This resource sharing enables competing species to share resources by accessing these resources in different ways. http://collections.ic.gc.ca/warblers/ident.htm

The Broad Niche

In northern Canada there are large populations of those species found there, but there are not as many different plant and animal species as there are in other parts of Canada. Large herds of caribou, polar bears, wolves and millions of arctic hare make up the majority of the animals you will find. The species of wolf, *Canis lupus*, and polar bear, *Ursus maritimus*, are also found in Russia and northern Europe. In contrast, hundreds of thousands of species (in small populations) can be found in the rainforests of Central and South America. The reason that Canada supports large populations, with less diversity is the extreme environment and seasonal variations, which restrict their food supply. Organisms living in this ecosystem have a broad niche with adaptations that enable them to survive the extreme changes occurring there. These species are considered to be generalists – able to spread over large areas.

Diversity in the Tropics: The Dangers of a Narrow Niche

In the tropics, where the temperatures are relatively constant and food supply is stable, organisms are specialists. They efficiently survive in their environment, because they have relatively narrow niches with adaptations directed toward competing for one dependable food source, type of soil or level of light. This specialization allows many different species to coexist in the same area, preventing one species from becoming dominant. The result of this is high diversity with low populations.

A specialist is well adapted to survive in one particular environment. This is considered to be the 'trap of specialization', because, as it is able to survive very well in one environment, it is not able to adapt to extreme change and may not survive when this occurs. The cutting down of the rainforests have meant a loss of diversity, because many organisms have been unable to adapt to this change.

Dependencies Between Species

Each and every species depends on many other species within an environment in order to survive and prosper. Food chains and food webs represent different types of ongoing relationships between and among all the organisms, within a particular environment.

Symbiosis

A different type of interdependence is an association, within a certain population, between members of different species.

There are different types of symbiotic relationships:

- Commensalism in which one of the participating members benefits, but the other does not, and there is no harm done to that organism.
 (a bird using a tree to build its nest in) (barnacles on a whale)
- Mutualism both organisms benefit from the relationship. (mychorrhizae (fungi) help plants absorb water and minerals from the soil, by increasing the surface area of the roots, when they attach themselves to the roots to draw nutrients directly from the plant, also protecting the plant from disease.
- Parasitism one organism benefits while the other organism (the victim) is harmed. (the
 parasite usually doesn't kill the host, because the host represents the parasite's food
 supply.

(tapeworm in a human host) (Mexican bean beetle is a plant parasite)

Interspecies competition happens when two or more species need the same resource. This type of relationship helps to limit the size of populations, of the competing species.

There are many examples of these types of symbiotic relationships, which show the importance of adaptations, helping particular species survive.

Life In the Extreme

Living in an environment at 110°C or -35°C - rare, but possible because of adaptations organisms have to live in these extremes.

Tube worms live on the ocean floor, near black smokers, where volcanic vents make the temperature extremely hot.

Antarctic springtail are arthrods that live in extreme cold, by producing a kind of antifreeze in its tissues.

Snow algae have cell membranes adapted to cold temperature, making their own food by photosynthesis. The red color protects them from the intensity of the sun on the snow.

Many organism have adaptations that defy our understanding of life. They therefore hypothesize that life may exist in the harsh environments on other planets.

Topic 2 - Habitat and Lifestyle

- 1. What it eats, its habitat, nesting site, range and habits, what effect it has on the other populations and what effect it has on the environment is the role that an organism has within a particular ecosystem called a ...
 - A. niche
 - B. species
 - C. variation
 - D. adaptation
- 2. Adaptations play an important role when competition occurs, because the species that is best suited to survive will. Competition occurs between different species when this is not plentiful ...
 - A. habitat diversity
 - B. basic need resources
 - C. species interactions
 - D. adequate protection
- 3. Some bird species, like warblers, share resources by accessing these resources in different ways. They avoid direct competition for the same resource, by practicing a technique called ...
 - A. food supply sharing
 - B. nutrient cooperation
 - C. resource partitioning
 - D. interspecies sharing
- 4. Canada supports large populations, with little diversity is the extreme environment and seasonal variations. The reason this restricts species' diversity is because of the limited ...
 - A. habitats
 - B. diseases
 - C. competition
 - D. food supply
- 5. Specialists in the tropics efficiently survive in their environment, because they have relatively narrow niches with adaptations directed toward competing for ...
 - A. more than one food supply or niche they can occupy.
 - B. one dependable food source, type of soil or level of light.
 - C. alternate habitats with speciation and resource partitioning
 - D. multiple food sources and fewer competitors for resources
- 6. Different types of ongoing relationships between and among all the organisms, within a particular environment, are represented by ...
 - A. food chains and food webs
 - B. niches and speciation
 - C. competition and predation
 - D. adaptation and habitation
- 7. A different type of interdependence is an association, within a certain population, between members of different species happens when two or more species need the same resource. This type of relationship which helps to limit the size of populations, of the competing species is called
 - A. mutualism
 - B. parasitism
 - C. commensalism
 - D. interspecies competition
- 8. Living in an extreme environment is rare, but possible because of adaptations organisms have to live in these extremes. Antarctic springtail live in extreme cold, by producing in their tissues, a kind of...
 - A. blood thinner
 - B. antibiotic
 - C. antifreeze
 - D. blocking agent

Topic 3 - Passing It On

Characteristics are passed on from generation to generation through the reproductive process. Some characteristics, or traits, are inherited through genetic material. Living organisms display a wide variety of reproductive strategies for passing on their genetic information to their offspring.

Asexual Reproduction

Asexual reproduction involves only one parent who passes on the genetic information to their offspring. This sharing of genetic information makes the offspring identical to the parent. There are different types of asexual reproduction:

• **Binary Fission** - only single-celled organisms reproduce in this way. The cell duplicates its contents, including its nucleus and other organelles and then splits into two cells with each one being identical. (bacteria, amoeba, algae)

Asexual Spore Production - spores are similar to seeds, but are produced by the
division of cells on the parent, not by the union of two cells. One parent may produce
many spores, each of which will grow into a new individual, identical to its parent. (fungi,
green algae, moulds, ferns). Many spores are produced to ensure that at least some of
the individual organisms will survive. Zoospores can also be produced by some fungi
and green algae. They move using tail-like flagella.

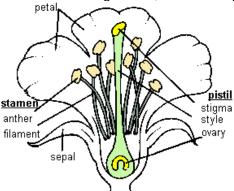
• Asexual Reproduction in Plants

A plants continues to grow throughout its life. The rapidly growing tips of roots and stems contain specialized reproductive cells called meristem. At a certain time these cells will specialize into cells that make up roots, stems and leaves. If parts of the plant are damaged, the meristem cells make repairs. Clones can be made from cuttings of a plant, because the meristem cells can specialize to reproduce the different parts needed to make a new plant. Asexual reproduction can produce many plants very quickly. This is an advantage in places where the environment doesn't change very much (bacteria). By building a large population of organisms very quickly the species is able to thrive. The great disadvantage is that when the environment changes, all of the organisms will die, if they do not have the ability to adapt to the change.

• **Budding** - the parent organism produces a bud (a smaller version of itself), which eventually detaches itself from the parent and becomes a self-sufficient individual - identical to the parent. Coral also reproduces in this way, but do not detach themselves (hydra, yeast, coral, sea sponge).

Sexual Reproduction

Sexual reproduction usually involves two individual organisms. The offspring that are produced from this union have a mix of characteristics, half from one parent and the other half from the other parent. Sexual reproduction does not always involve male and female parents, but can have specialized *gametes* (reproductive cells that have only one role - to join with another gamete during reproduction). Many organisms are capable of both sexual and asexual reproduction, like some moulds, such as *Rhizopus*, which produce spores. They can also produce *zygospores*, enabling them to reproduce sexually as well.


Sexual reproduction has the advantage of providing lots of variation within a species, helping it to survive when the environment changes. The main disadvantage is that this process takes a lot of energy. This means that they can only produce small populations.

Bacterial Conjugation

Bacteria are able to transfer genetic material directly from one cell to another through a process called bacterial conjugation. It is a primitive form of sexual reproduction, since two parent cells are involved. The benefit is that new combinations of inherited characteristics may result. Although this process is not actually reproduction, because there is no increase in the number of cells, it does result in genetic recombination. The newly created cell can then divide by binary fission, to create identical cells with the new genetic material.

Sexual Reproduction in Plants

Sexual reproduction in plants involves gametes as well, male gametes and female gametes joining, during fertilization, to produce a zygote and then an embryo. Most plants produce both male and female gametes, while some produce one or the other only.

Pollen contains the male gametes and is found on the stamen. Ovules contain the female gametes and are found in the pistil. Pollination occurs when pollen is transferred from the anther of the stamen to the stigma of the pistil. Cross-pollination occurs when pollen from one plant is carried to the stigma of another plant by wind, water or animals (bees or butterflies). Cross-fertilization occurs when a grain of the pollen forms a long tube (pollen tube), which grows down the style into the ovary. The gametes unite to produce a zygote, which then develops into an embryo. This usually happens inside a seed, which protects the embryo and provides food (cotyledon) for the embryo when growing conditions are right. Plants which are produced, as a result of cross-fertilization, are not identical to either plant.

Plants reproduce Sexually and Asexually

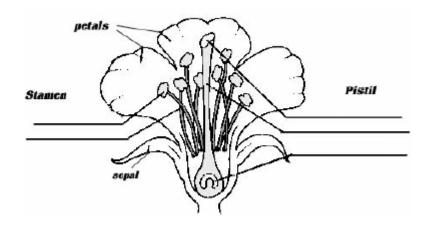
Sponges and hydra are organisms that can produce both sexually and asexually. Most plants that produce seeds can also reproduce asexually (cuttings, runners). Depending on the environmental conditions the amount of energy varies, enabling the plant organism to control its population. Vegetative Reproduction - is the reproduction of a plant not involving a seed, including; cuttings, runners, suckers, tubers. (coleus plant, spider plants, strawberries, aspen, potatoes) Mosses produce asexual spores in the early part of their life cycle and then egg and sperm cells are produced in a later part of the same cycle.

Sexual Reproduction in Animals

Sexual reproduction in animals involves gametes. The male gametes are called sperm cells, and the female gametes are called egg cells (ova). During mating, the sperm cell and the egg cell unite to form a fertilized combination of cells called a zygote. This zygote is the first of many cells of a new individual. This zygote will begin to divide into two cells and this continues to be repeated over and over resulting in the development of an embryo. This embryo develops into a multi-cellular organism inside the female (in most mammals) or, outside (in an egg shell) in other animals.

Topic 3 - Passing It On

- 1. Characteristics are passed on from generation to generation through the reproductive process. Some characteristics, or traits, are inherited through ...
 - A. waste matter
 - B. genetic material
 - C. cellular respiration
 - D. learned behavior
- 2. There are different types of asexual reproduction: When the cell duplicates its contents, including its nucleus and other organelles and then splits into two cells with each one being identical (bacteria, amoeba, algae)



- only single-celled organisms reproduce in this way - it is

called ...

- A. budding
- B. tuber formation
- C. binary fission
- D. spore production
- 3. Spores are similar to seeds, but are produced by the division of cells on the parent, not by the union of two cells. Many spores are produced to ensure that at least some of the individual organisms will survive. Some fungi and green algae can also produce types of spores that move using tail-like flagella and are called ...
 - A. paramecium
 - B. flagella spores
 - C. pseudopods
 - D. zoospores
- 4. Plants continue to grow throughout their lives. The rapidly growing tips of roots and stems contain specialized cells called meristems that function in the process of ...
 - A. reproduction
 - B. transportation
 - C. photosynthesis
 - D. respiration
- Coral reproduces (a smaller version of itself), a self-sufficient individual identical to the parent, but do not detach themselves in the same way as other organisms do. This asexual reproductive process is called ...
 - A. cuttings
 - B. tubers
 - C. budding
 - D. grafting
- 6. Many organisms are capable of both sexual and asexual reproduction, like some moulds, such as *Rhizopus*, which produce spores. To reproduce sexually as well, they can also produce ...
 - A. angiosperms
 - B. zoospores
 - C. zygospores
 - D. gametes
- 7. A primitive form of sexual reproduction in which bacteria are able to transfer genetic material directly from one cell to another is called bacterial conjugation. Because there is no increase in the number of cells, it does result in genetic...
 - A. redistribution
 - B. recombination
 - C. reconstitution
 - D. recovery

Sexual reproduction in plants involves male gametes and female gametes joining, during fertilization, to produce a zygote and then an embryo.

- 8. The stamen part of the flower is the ...
 - A. male gamete
 - B. female gamete
 - C. zygote
 - D. embryo
- 9. Plants which are not identical to either plant are produced as a result of ...
 - A. zygote growth
 - B. cross-fertilization
 - C. embryo development
 - D. self-pollination
- 10. The pistil is composed of the following flower parts ...
 - A. ovary, filament, stigma
 - B. stamen, stigma, ovary
 - C. anther, ovary, stigma
 - D. stigma, style, ovary
- 11. Most plants that produce seeds can also reproduce asexually. Mosses produce egg and sperm cells in the later part of the life cycle and in the early part of the same life cycle produce asexual
 - A. gametes
 - B. cuttings
 - C. spores
 - D. buds
- 12. During mating, the male gamete cell and the female gamete cell unite to form a fertilized combination of cells which are the first of many cells of a new individual called a ...
 - A. zygote
 - B. embryo
 - C. sperm
 - D. egg

Topic 4 - Wearing Your Genes

Variation is one of the most critical aspects of species survival. This variation may not always be as easy to find as color usually is, because it may be a behavioral tendency or a genetic (cellular code) modification that enables some individuals within a species to survive, while others, of the same species, will perish.

Two Kinds of Inherited Variation

Inherited (heritable) characteristics are those traits which are passed on to offspring directly from their parents. These traits are passed on by way of the genetic material that is combined from the parents during the process of sexual reproduction. Heritable traits include, structural and distinguishing characteristics, such as eye color, hair type, skin color and earlobes. Continuous variations are differences in characteristics that have a range of possible variations, such as height, shoe size, hand span, skin color, hair color, etc. Discrete variations are differences in characteristics that have a definite form, with a limited number of possibilities. This includes those individuals, within a species, that have either one characteristic, or the single, other variation, of the characteristic. Examples include: tongue

(**Global Human Traits**: Variation in Human Characteristics Around the World) http://edguest.ca/Projects/GHTS/ghts.html

rolling ability, blood groups, earlobe attachment, hairline, etc.

Dominant or Recessive?

Traits are passed on from parents to offspring during sexual reproduction. Some of these traits are dominant and some are recessive. When they are mixed, a dominant trait will show up in the offspring. The frequency of a particular characteristic does not indicate whether it is dominant or recessive. Frequency varies from population to population. A dominant trait, such as having six fingers, is relatively rare.

Nature Versus Nature

Not all characteristics are inherited. Some depend entirely on the environment. Non-inherited characteristics are acquired and not necessarily passed on from generation to generation. Athleticism, artistic ability, leadership qualities are all learned during the early years of life. Some variations may be influenced by interactions with the environment. These variations are also non-inherited. Examples include: change in the pigmentation of skin color throughout the seasons due to the sun, height and weight can be influenced by diet. Scars, injuries, clothing, hairstyle, makeup, and cosmetic surgery may change a person's characteristics, but they are not caused by genetics. The interactions between a person's genetics and the environment are very complex and are constantly being debated. One way that scientists study the relationship between genetics and the environment is to observe the similarities and differences between identical twins that have been separated at birth and raised in different environments.

Changing Our Genetic Information

Factors in the environment, or random events can change genetic information contained in DNA. These changes are called mutations, and can cause changes in the structure of organisms, including people. Mutagens, such as X-rays, ultraviolet rays, cosmic rays and some chemicals can cause mutations to occur – some that have little visible effects and some that have dramatic effects. Some mutations can cause cancer, which promote rapid cell division and impair full normal cell development. The cancerous cells can interfere with other cells and prevent certain processes from occurring as they should. If mutations occur in the DNA of reproductive cells, the changes can be passed on from the parent to the offspring, increasing the variation within a species.

http://www.dnaftb.org/dnaftb/1/concept/

Topic 4 - Wearing Your Genes

- The branch of science that deals with the study of heredity is called ...
 - A. biodiversity
 - B. genetics
 - C. variation
 - D. speciation
- 2. Inherited (heritable) characteristics are those traits that are passed on to offspring directly from their parents. Heritable traits include, structural and distinguishing characteristics. All of the following are heritable traits, except ...
 - A. earlobes
 - B. skin color
 - C. eye color
 - D. artistic ability
- 3. Continuous variations are differences in characteristics that have a range of possible variations. Discrete variations are differences in characteristics that have a definite form, with a limited number of possibilities. The only discrete variation included here is ...
 - A. hair color
 - B. blood groups
 - C. earlobe attachment
 - tongue rolling ability
- Two different types of traits are passed on from parents to offspring during sexual reproduction. When these trait types are mixed, the one that will show up in the offspring is the ...
 - A. continuous trait
 - B. recessive trait
 - dominant trait C.
 - D. discrete trait
- 5. Having six fingers on one hand is relatively rare in the general population. The following is the only true statement about this unique trait, "It is an inherited trait that is ...
 - A. recessive with a low frequency
 - B. recessive with a high frequency
 - dominant with a low frequency C.
 - D. dominant with a high frequency
- Non-inherited characteristics are acquired and not necessarily passed on from generation to generation. Some variations may be influenced by interactions with the...
 - A. parents
 - B. scientists
 - C. engineers
 - D. environment
- 7. Mutations can cause changes in the structure of organisms, including people. Mutagens, cause mutations to occur - some that have little visible effects and some that have dramatic effects. The mutagen that would have the most dramatic effect in a person would likely be ...
 - A. x-rays

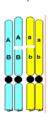
 - B. gamma rays
 C. microwaves
 D. ultraviolet rays

Topic 5 - When Plans Change

DNA: The Secret of Life http://www.dnai.org/index.htm

The blueprint that is passed on from the parents to the offspring is found in a molecule of the cell nuclei. This molecule, *deoxyribonucleic acid*, (DNA) is the inherited material responsible for variation. All living organisms contain DNA in their cells. DNA was discovered prior to 1944, by Swedish chemist Johann Miescher (1886). This simple substance is able to carry out all of the functions of genetic material, reproducing itself, moving from parent to offspring and controlling structures and functions of cells. DNA contains all the instructions, which create the organism's characteristics. The multitude of characteristics for each organism means that there is a lot of DNA in any one cell. This DNA is arranged in the cell in compact packages, called chromosomes.

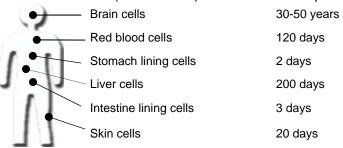
The Structure of DNA http://www.dnaftb.org/dnaftb/15/concept/


All DNA molecules contain exactly the same chemicals, but the way the chemicals combine determines the characteristics of the organism. James Watson and Francis Crick unraveled the structure of DNA in 1953, revealing the key to the multitude combinations of variation that are possible. The DNA molecule is like a ladder twisted into a spiral (see image). The sides of the ladder are the same in all DNA molecules, but the rungs are what make the variations. Each rung pairs up two of the following chemicals: guanine (**G**), cystosine (**C**), adenine (**A**) and thiamine (**T**). The arrangement of these four chemicals creates the code that the cells are able to interpret. This is the genetic code of the organism.

The Genetic Code

Characteristics are passed on from one generation to another within a species through the genetic code of the parents. This genetic code is a unique sequence in each individual that provides the blueprint for each individual organism. Protein molecules make up much of the structure of cells and tissues in plants and animals. A section of the DNA molecule for a specific protein is called a gene.

The Dance of the Chromosomes


All human cells contain 46 chromosomes. In order to have a complete human organism, all 46 of the chromosomes must be present. Not all organisms have the same number of chromosomes (Dogs have 78, cats have 38). Every cell of a human contains 23 pairs of chromosomes (dogs 39, cats 19). Not all of the chromosomes from species to species are the same, which accounts for the different characteristics between the species. A single gene is an uninterrupted segment of DNA, which contains the coded instructions for the organism.

Genes are located in the chromosomes and come in pairs. Each chromosome has numerous gene locations. Both genes in a pair carry DNA instructions for the same thing. Specific characteristic genes occupy matching locations on the two chromosomes. DNA code may not be exactly the same in both locations. Offspring inherit genes from both parents. The genes exist in an array of possible forms that differ as to their exact DNA sequence. These variations in forms are called alleles. The ultimate combination of the chromosome pair is what makes the variation possible - combining the different variations of different characteristics to create a unique variation.

Normal Cell Replacement

Different human cells (somatic cells) have different life spans.

Replication of the contents of each cell occurs and then. When the cell divides, the process of Mitosis ensures each cell ends up with a complete set of chromosomes, identical to each other and identical to the original cell.

Sex Cells and Genetic Variation

The sex cells are called gametes. Male gametes are sperm cells and female gametes are egg cells. Meiosis, the process of forming gametes occurs in the same way as somatic cells. Meiosis is a type of cell division that produces cells with only half the DNA of a normal cell. This process involves two cell divisions, not one. Each sperm cell and egg cell contains 23 chromosomes. Tutorial: http://www.biology.arizona.edu/cell_bio/tutorials/meiosis/page3.html

When an egg cell is fertilized by a sperm cell a zygote is formed, which has a complete set of 46 chromosomes – 23 from the sperm cell and 23 from the egg cell. When the zygote grows and develops it becomes an embryo and then becomes a human at birth. This type of sexual reproduction increases variation within a species. In multi-cellular organisms the process that produces two new cells with the same number of chromosomes is called Mitosis. http://www.sci.sdsu.edu/multimedia/mitosis/mitosis_gif1.html

The Benefits of Variation

Life is relatively short and to ensure that a species will survive, reproduction must occur. Asexual reproduction produce identical members of the same species, so there is good chance that some will survive to reproduce and continue the cycle of life. Sexual reproduction produces variation

Technology and Variation

Moving pieces of one strand of DNA to other cells is a relatively new technique that has emerged. In the science of genetics, genetic engineering has enabled scientists to create individuals within a species with desirable traits. Biotechnologies are beginning to become controversial, now that the genetic code for many species has been unraveled. The question remains – Are we 'tampering too much with nature'? The debate rages on!

Biotechnology in Medicine

One of the first uses of modern biotechnology was to move the human gene for insulin into bacteria. By doing this, bacteria were able to produce large quantities of insulin in a relatively short time, as a waste product, which then was collected and used by diabetes patients. Bacteria are not the answer to everything, but they have motivated scientists to think about other more complex possibilities. Genetically modified, or transgenic, mammals are produced by adding human genes to the fertilized eggs of the mammal. Offspring that develop grow up with the human gene that can produce complex proteins, collected in the milk produced, purified and then used in the treatment of many human conditions, including iron deficiency, emphysema, hemophilia and blood clotting.

Biotechnology in Food Production

Genetic engineering has become an important technique for producing food, such as fish. Aquaculture is becoming an increasingly important method of fish farming mass production. Disease resistance genes, growth hormones and even antifreeze genes enable fish farmers to increase their yield with less chance of disease, in a shorter amount of time, and at all times of the year. But what happens if these 'special' fish make it out into the natural fish population? Will the natural populations of fish be able to compete with them?

A Cost-Effective Crop

Most genetically engineered crops in Canada are altered for specific reasons – to lower costs, decrease pest problems, and to improve yields. The monoculture that is produced as a result has its own problems. A single event or pest can wipe out an entire crop. And, what about genetically engineered food you see in the supermarket – would you buy it?

Purebred VS Hybrid

To produce purebred organisms, a breeder would choose pure bred parents, those parents whose ancestors have produced only the desired characteristic they want (**true-breeding**). If a breeder chooses two different 'true-breeds' then a **hybrid** would be produced.

Dominant Traits

Crossbreeding two different true-breeds will result in all of the offspring having the same characteristic, that is, the **dominant trait**. Only the DNA instructions for the dominant trait will be carried out.

Recessive Traits

When crossbreeding hybrids, the average results will produce 75% of the offspring with the dominant trait and 25% of the offspring with the recessive trait, because there are only 4 possible combinations. One trait is recessive and therefore the allele is recessive. A recessive trait only appears in the offspring if two recessive alleles are inherited.

Punnitt Squares http://www.mansfieldct.org/schools/mms/staff/hand/genpunnettsquares.htm http://library.thinkquest.org/20830/Textbook/Genetics.htm#Punnett%20Squares Incomplete dominance occurs because the dominant-recessive pattern does not always prevail. When the alleles are neither dominant, nor recessive, an intermediate trait will occur (combining the two traits).

Offspring Unlike Either Parent.

More than one gene location and more than one allele may be responsible for specific traits. As a result, the complex mixing of the possible combinations for that particular trait may account for the variation of traits an offspring has.

Bonus Material: Biological Diversity Classification

The two-name Latin naming system for all living things was developed by Carolus Linnaeus in the 18th century, enabling scientists, around the world, to refer to the same species, by the same name. This classification system was much more reliable than previous systems, because he used structure, rather than habitat. Two words identify each organism. The 1st represents the organism's **genus** and the 2nd represents the organism's particular **species**.

Scientists earlier had developed a system, which classifies all organisms, based on their structural differences, into 5 kingdoms.

- > Animalia (animals)
- > Plantae (plants)
- Fungi (yeasts, moulds and mushrooms)
- Protista (mostly single-celled organisms)
- > Monera (bacteria)

The 5 kingdom classification system can be further subdivided, with each sub-division having its own name.

Kingdom phylum class order family genus species

Specialists refer to other sub-divisions as well, such as; subfamilies, super-orders, and sub-species or varieties.

http://www.ruf.rice.edu/~bioslabs/studies/invertebrates/kingdoms.html

Topic 5 - When Plans Change

- The chemical blueprint passed on from the parents to the offspring is found in a molecule of the cell nuclei. This molecule is the inherited material responsible for variation. The chemical name for DNA is ...
 - A. dinitrogen oxide
 - B. double helix model
 - C. deoxyribonucleic acid
 - D. dual nitric acetone
- 2. The DNA molecule is like a ladder twisted into a spiral. The sides of the ladder are the same in all DNA molecules, but the rungs are what make the variations. Each rung pairs up two of the following chemicals: guanine (**G**), cystosine (**C**), adenine (**A**) and thiamine (**T**). The arrangement of these four chemicals creates the code that the cells are able to interpret. This code is called the ...
 - A. Genetic code
 - B. Mutagen code
 - C. Variation code
 - D. Chromosome code
- 3, A section of the DNA molecule for a specific protein that makes up much of the structure of cells and tissues in plants and animals is called ...
 - A. an atom
 - B. a gene
 - C. a nucleus
 - D. a code
- 4. 46 tightly coiled strands of DNA in humans represent the full compliment of ...
 - A. gametes
 - B. sperm cells
 - C. egg cells
 - D. chromosomes
- 5. Genes are located in the chromosomes and come in pairs. Each chromosome has numerous gene locations. Both genes in a pair carry DNA instructions for the same thing. Specific characteristic genes occupy matching locations on the two chromosomes. DNA code may not be exactly the same in both locations. Offspring inherit genes from both parents. The genes exist in an array of possible forms that differ as to their exact DNA sequence. These variations in forms are called ...
 - A. mutations
 - B. genetics
 - C. alleles
 - D. alternates
- 6. Different human cells (somatic cells) have different life spans.

When a cell divides, each cell ends up with a complete set of chromosomes, identical to each other and identical to the original cell. This process of Mitosis occurs most frequently in ...

- A. skin cells
- B. liver cells
- C. intestine lining cells
- D. stomach lining cells

- 7. The process of forming gametes occurs in the same way as somatic cells and is called ...
 - A. mitosis
 - B. meiosis
 - C. fertilization
 - D. conjugation

This type of sexual reproduction within a species increases ...

- A. variation
- B. mutations
- vulnerability C.
- specialization D.
- 9. Moving pieces of one strand of DNA to other cells is a relatively new technique that has emerged. In the science of genetics, this technique has enabled scientists to create individuals within a species with desirable traits and is called ...
 - A. biodiversity
 - B. biomagnification
 - genetic diversity C.
 - genetic engineering
- One of the first uses of modern biotechnology was to move a human gene into bacteria. By doing this, bacteria were able to produce as a waste product, large quantities of a drug, used by diabetes patients, called ...
 - A. Aspirin
 - B. Insulin
 - C. Tylenol
 - D. Quinine
- Aquaculture is becoming an increasingly important method of mass production fish farming, however, if these 'special' fish make it out into the open ocean, what organisms be negatively affected?
 - A. fishermen and biologists
 - B. predator populations

 - C. natural fish populationD. large mammal population
- 12. To produce purebred organisms, a breeder would choose purebred parents, those parents whose ancestors have produced only the desired characteristic. If a breeder chooses two different 'truebreeds', then the offspring produced would be a ...
 - A. domestic
 - B. mutant
 - C. gamete
 - D. hybrid

Topic 6 - The Best Selection

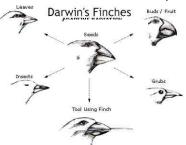
Long before the science of genetics started, people tried to reproduce organisms with only the most preferred traits, by allowing only those organisms with the desirable traits to reproduce. This method was not always successful, but through time (trial and error), this practice of controlled breeding provided scientists with the information to determine which alleles were responsible for specific traits. http://www.mansfieldct.org/schools/mms/staff/hand/geneticspageone.htm
Artificial Selection is the process of selecting and breeding individuals with desirable traits to produce offspring with the desired traits. The selection process is simple. Only those individuals, with the desired trait, will be allowed to reproduce. This selection process also applies to plants, which can be bred to possess desirable traits. The main difference between 'natural' selection and 'artificial' selection is that, humans control the artificial selection process.

Artificial Selection in Agriculture (and Ranching)

The process of intervention to produce more desirable organisms has been going on for some time. This process takes a long time to see results - usually many generations. Farmers, dog and horse breeders, along with scientists can now speed up the artificial selection process by using 'low-tech' or 'high-tech' technologies, such as;

- cloning (made from cells)
- artificial insemination (artificially joining the male and female gametes)
- in vitro fertilization (male and female gametes are selected and then allowed to fertilize in a controlled setting)
- genetic engineering (directly altering the DNA of an organism)

Plant breeding is an important part of agriculture. Selective breeding programs bring positive characteristics of two different varieties together to create a new variety that has more desirable characteristics, such as what was done to produce Western Red Spring Wheat. The flour from this grain is used to make pan bread. Canadian Western Durum is good for making pasta. Other varieties have also been engineered for specific purposes, such as resistance to disease, length of time to mature, resistance to extreme temperatures (hot or cold), and even taste.

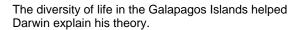

Accounting for Biological Diversity

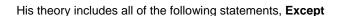
The specimens and observations made by Charles Darwin about the diversity of life on the Galapagos Islands is detailed in his most famous book, *Origin of the Species by Means of Natural Selection*. Find out more about **Charles Darwin** and his work through the Mystery Scientist link: http://www.edquest.ca/content/view/227/

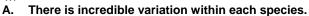
The Theory of Natural Selection

The diversity of life in the Galapagos Islands helped Darwin explain his theory of natural selection. It can be summed up in four statements:

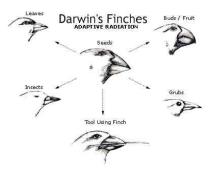
- 1. All organisms produce more offspring than can possibly survive.
- 2. There is incredible variation within each species.
- 3. Some of the variations increase the chances of an organism surviving to reproduce.
- 4. Over time, variations passed on through offspring lead to changes in the genetic characteristics of a species.


Natural selection happens when factors in the environment determines, or 'selects' which individuals, within a species, will be able to survive. If they are able to live long enough to reproduce, then those individuals with their 'survival adaptations (characteristics) will have offspring with similar survival characteristics.


These observations and conclusions were supported by another biologist Alfred Wallace. The Galapagos finches provide the best example of this theory – how the fittest, or best-adapted, organisms for a specific environment survive.


Other Natural selection examples include Equus (Horse p. 64 Science Focus 9 textbook) and the Peppered Moth: http://www.millerandlevine.com/km/evol/Moths/moths.html

Topic 6 - The Best Selection


- 1. Long before the science of genetics started, people tried to reproduce organisms with only the most preferred traits, by allowing only those organisms with the desirable traits to reproduce. This method was not always successful, but it provided scientists with information to help them determine which alleles were responsible for specific traits through ...
 - A. organization
 - B. trial and error
 - C. scientific research
 - D. opinion and thought
- 2. The process of intervention to produce more desirable organisms takes a long time to see results usually many generations. Speeding up the artificial selection process by using cells to make new cells is called ...
 - A. cloning
 - B. in vitro fertilization
 - C. genetic engineering
 - D. artificial insemination
- Agricultural selective breeding programs bring positive characteristics of two different varieties together
 to create a new variety that has more desirable characteristics, such as the type created to produce
 flour that is good for making pasta, called ...
 - A. Canada Prairie Spring Wheat
 - B. Hard White Spring Wheat
 - C. Canadian Western Amber Durum
 - D. Western Red Spring Wheat
- 4. The specimens and observations made by Charles Darwin about the diversity of life on the Galapagos Islands is detailed in his most famous book, *Origin of the Species*. Darwin was the first scientist to explain that selection process occurred ...
 - A. automatically
 - B. instinctively
 - C. artificially
 - D. naturally
- 5. The Galapagos finches provide the best example of this theory how the fittest, or best-adapted, organisms for a specific environment survive.

- B. All organisms produce more offspring than can possibly survive.
- C. Some of the variations increase the chances of an organism surviving to reproduce.
- D. Eventually, over time, variations stop being passed on through offspring.
- 6. Other examples that can be explained using Darwin's theory include what happened to this insect in industrialized England. The change in coloration enabled this species of moth to survive. The species is known as the ...
 - A. Salted Moth
 - B. Sugared Moth
 - C. Peppered Moth
 - D. Black and White Moth

Topic 7 - The Sixth Extinction

In the last 600 million years there have been five major declines in the Earth's biodiversity. There has however, over the last 65 million years, been an increase in diversity greater than the rate of extinction. The rate of extinction is thought to be 1 species per day over the age of life on the planet. The rate today is 70 extinctions per day. Natural selection is a slow process. Even if there is a lot of variation within a species, sometimes the changes in the environment are so drastic and so quick, that none of the individuals within a species can survive. Natural extinction can occur as a result of:

- catastrophic events (volcanic eruptions, earthquakes, floods, fire)
- lack of food (due to overpopulation)
- disease

Not all extinctions happened millions of years ago. Diseases and natural events occur all the time and when they do, a species, within a particular area, can be extirpated very quickly. Sometimes organisms have adaptations that suit them only to a very narrow set of environmental conditions. This usually occurs in a relatively stable area, where the environment does not change for a very long period of time. This is called overspecialization and it is another cause of extinction. The giant panda is a species that is overspecialized, because it relies on bamboo, making it vulnerable to extinction, when the bamboo is scarce.

Extinction is the disappearance of every individual of a species from the entire planet. It is a natural part of the Earth's history. Scientists estimate that 99% of species that have ever existed on the Earth are now extinct (many by mass extinction - sudden environmental change, like the Ice Age). Most extinction take place over long periods of time, but the rate of extinctions is rising, and this is reducing the biological diversity of our planet.

Extirpation is a local extinction, or the disappearance of a species from a particular area. Most extinctions and extirpations today are caused by human activity, such as habitat destruction - as a result of – Urbanization, Construction, Agricultural development, Logging, Damming of rivers, Pollution, Pesticides, Herbicides and Fertilizers Extinctions and extirpations reduce biological diversity. When an organism disappears locally or globally, many other species are affected. The cycle of life is adversely affected. http://www3.gov.ab.ca/srd/fw/escc/aspsr.html
The General Status of Alberta Wild Species 2000

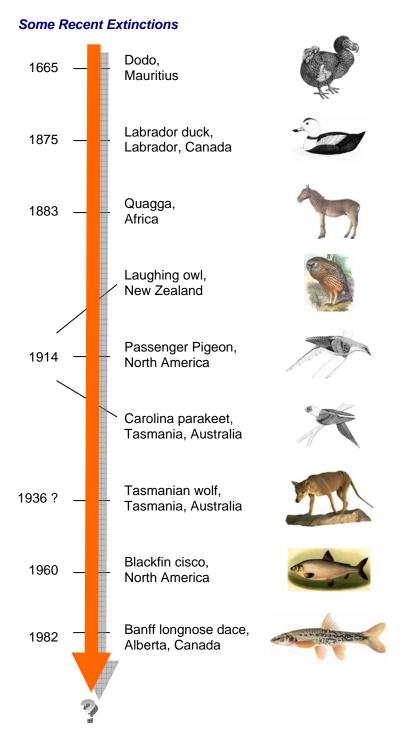
Human Impacts on Biodiversity http://www.nysm.nysed.gov/bri/process.html

The stresses of urbanization and habitat intrusion by farming and industry have resulted in a decline in genetic, species and ecosystem diversity. Extinction, population decreases and degradation of ecosystems all reduce biological diversity on the Earth.

Disappearing Habitats

As a bioindicator species, the Grizzly Bear helps us to determine the human impact on an ecosystem. This large carnivore's ability to survive or disappear is historically a sign that human interference in an ecosystem is occurring or not.

Human Impacts on Rainforest Ecosystems


The population globally is on the increase. With new methods of farming and better ways of preventing disease food and medicine are allowing people to live longer. This large population is putting pressure on the environment, because of increased human activities stated previously.

The Population Explosion

The impact of population is not shared equally around the globe. The hardest hit is developing regions where diversity is most threatened. Tropical rainforest are being clear cut to make way for farmland, cattle ranches, pineapple and coffee plantations, and fuel. Loss of rainforests, mean the extinction of specialized organisms depending on the forests for food and protection. Because the soil in a rainforest has few nutrients the farms and plantations are successful for only a short time and then it is difficult to repair the damage to the original rainforest. The loss of diversity is permanent.

Human Activities and Extinction

The impact of loss of diversity, through extinction, has been studied and our understanding of its importance has changed. When introduced species use the same resources, as native species, competition will cause a decline in the numbers of native species, simply because there is less to go around. The introduced species will have no natural predators to limit its population and will, in time, take over from the native species. Over-hunting was the major cause of the decline and eventual extirpation of the plains Bison, as well as the extinction of the passenger pigeon. Sometimes species are hunted to deliberately extirpate them. The black-tailed prairie dogs were considered a pest in the 1930's and were hunted to reduce their numbers.

Copyright 2005 – Developed by Edquest Resources (www.edquest.ca)

Topic 7 - The Sixth Extinction

- 1. The rate of extinction is thought to be 1 species per day over the age of life on the planet. Natural extinction can occur as a result of all of the following, **Except** ...
 - disease
 - B. pollution
 - C. volcanoes
 - D. earthquakes
- 2. Diseases and natural events occur all the time and when they do, the loss of an entire species, within a particular area, causes that species to be ...
 - A. extinct
 - B. extirpated
 - C. threatened
 - D. Endangered
- Scientists estimate that 99% of all species that have ever existed on the Earth are now ...
 - A. extinct
 - B. extirpated
 - C. threatened
 - D. Endangered
- The stresses of urbanization and habitat intrusion, by farming and industry, have resulted in extinction, population decreases and degradation of ecosystems, all of which reduce ...
 - A. variation
 - B. genetic selection
 - C. biological diversity
 - D. ecological renewal
- 5. The Grizzly Bear helps us to determine the human impact on an ecosystem. This large carnivore's ability to survive or disappear is historically a sign that human interference in an ecosystem is occurring or not. Grizzly Bears are considered to be ...
 - A. Bioaccumulated species
 - B. Biomagnified speciesC. Biodiverse species

 - D. Bioindicator species
- 6. Tropical rainforest are being clear-cut to make way for farmland, cattle ranches, pineapple and coffee plantations, and fuel. Loss of rainforests, mean the extinction of specialized organisms depending on the forests for food and protection. The impact of population is not shared equally around the globe. The hardest hit, where diversity is most threatened, are in ...
 - A. developing regions
 - B. undeveloped regions
 - C. remote regions
 - D. isolated regions
- The major cause of the decline and eventual extirpation of the plains Bison, as well as the extinction of the passenger pigeon and the black-tailed prairie dogs was ...
 - A. disease
 - B. loss of habitat
 - C. over-hunting
 - D. loss of food supply
- 8. Using the chart on the next page, identify which extinct group of species is represented the most ...
 - A. fish
 - B. birds
 - C. carnivores
 - D. herbivores

Topic 8 - Pains and Gains

The Role of Zoos in Preserving Biodiversity

Zoos were not originally started to preserve diversity. They were exotic collections for private collectors. They didn't become public until the early 1800's – in London. Today there are thousands around the world and we have one of the finest - right here in Alberta. The Calgary Zoo is known as one of the finest zoos in the world. Located on St. George's Island in the Bow River, it opened in 1929. It now is home to over 1100 species, including endangered species such as the Whooping Crane and the Siberian Tiger. Besides being home to a diverse group of animals and plants, the Zoo is an educational institution that runs school programs for K-12 students. It is also part of a worldwide network that is attempting to protect and preserve endangered species. Animal exchange programs help to increase the genetic diversity essential to species survival. Support for research is also a large part of their program. Zoos are visible evidence of our attempt to preserve and maintain biological diversity.

Preserving the Biodiversity of Plants

Preserving global biological diversity is a challenge that is receiving much attention. *Ex-situ* conservation refers to conservation of components of biodiversity outside of a natural habitat. Examples include:

- ➤ The collection and storage of genetic resources, such as seeds (IPGRI)
 London, England's Royal Botanic Gardens is one of the world's largest seed banks. The goal is to collect 10% of the world's seed-bearing plants.
- Zoos (captive breeding programs) Calgary Zoo
- Sperm and Egg Banks
- Human Genome Project

A Global Effort

The preservation of biological diversity depends on local efforts and global efforts. The 1995 **Canadian Biodiversity Strategy** was created to preserve biodiversity in Canada. It will be done through the cooperation of many levels of government, along with many groups, agencies and individuals, who are dedicated to preserving our bio-diverse future.

- Protected Areas (National Parks, Provincial Parks, game preserves, natural areas)
- Restoration Programs for Ecosystems and Species (Governments and Nature
 Conservancy of Canada programs to purchase land for species habitat renewal,
 individual landowners giving habitat back in the form of a naturally protected area,
 Ducks Unlimited CARE program, Swift Fox restoration of a species extirpated from
 Canada and now recovering)
- Resource Use Policies (Laws National Accord for the Protection of Species at Risk -Species at Risk Act - Wildlife Act, 1998)
- Controlling the Introduction and Spread of Exotic Species (Information and teaching about the invasiveness of an exotic species is communicated to the public on a regular basis. Penalties and fines, as well as loss of desirable areas for recreational purposes, has improved the perception of the negative effect an exotic species can have on a local ecosystem.)
- Global Treaties: 1975 Convention on International Trade of Endangered Species (CITES) is aimed at preventing endangered plants and animals from being imported or exported. It is illegal to buy or sell animals or animal parts identified for protection by CITES.
- 1992 Convention on Biodiversity was signed by 180 countries to set up and maintain protected areas for threatened and endangered species.
- Canadian Wildlife Federation and Canadian Nature Foundation educate the public about biodiversity issues and lobby the government to conserve our Canadian biodiversity.

Topic 8 - Pains and Gains

- 1. Zoos didn't become public until the early 1800's in London. They were not originally started to preserve diversity. They were ...
 - A. exotic collections for private collectors
 - B. specialized keepsakes for royalty
 - C. black market species for criminals
 - D. formed to prevent species over-population
- 2. Preserving global biological diversity is a challenge that is receiving much attention. Conservation of components of biodiversity, like zoos, outside of a natural habitat, are called ...
 - A. In-situ
 - B. Ex-situ
 - C. Out-situ
 - D. Un-situ
- 3. The preservation of biological diversity depends on local efforts and global efforts. The **Canadian Biodiversity Strategy** was created to preserve biodiversity in Canada in ...
 - A. 1850
 - B. 1905
 - C. 1950
 - D. 1995
- 4. The Calgary Zoo, besides being home to a diverse group of animals and plants, is an educational institution that runs school programs for K-12 students. It is also part of a worldwide network that is attempting to protect and preserve ...
 - A. exotic species
 - B. native species
 - C. domestic species
 - D. endangered species
- 5. Global Treaties: 1975 Convention on International Trade of Endangered Species (CITES) is aimed at preventing endangered plants and animals from being imported or exported. It is...
 - A. harmful to the health of participating individuals and their families
 - B. illegal to buy or sell animals or animal parts identified for protection
 - C. unethical to take advantage of animals that are endangered or threatened
 - D. Immoral to kill animals without the proper licenses or certificates

Biological Diversity

Unit A

Topic 1

Biological Diversity and Survival

- A Wealth of Diversity
- Variations for Survival
- The Value of Variation
- Measuring Biological Diversity

Topic 2 Habitat and Lifestyle

- The Niche: What Makes an Organism Special?
- Variation and Competition
- The Broad Niche
- Diversity in the Tropics: The Dangers of a Narrow Niche
- Dependencies Between Species
- Life In the Extreme

Topic 3 Passing It On

- Asexual Reproduction
- Binary Fission
- Asexual Spores
- Asexual Reproduction In Plants
- Budding
- Sexual reproduction
- Bacterial Conjugation

Topic 4 Wearing Your Genes

- Two kinds of inherited Variation
- Dominant or Recessive?
- Nature Versus Nature
- Changing Our Genetic Information

Topic 5 When Plans Change

- DNA: The Secret of Life
- The Structure of DNA
- The Genetic Code
- The Dance of the Chromosomes
- The Benefits of Variation
- Technology and Variation

Topic 6 The Best Solution

- Artificial Selection in Agriculture
- Accounting For Biological Diversity
- The Theory of Natural Selection

Topic 7 The Sixth Extinction

- Human Impacts on Biodiversity
- Human Impacts on Rainforest Ecosystems
- Human Activities and Extinction

Topic 8 Pains and Gains

- The Role of Zoos in Preserving Biodiversity
- Preserving the Biodiversity of Plants
- A Global Effort

Biological Diversity Review

Topic 1 - Biological Diversity and Survival

What does the term biological diversity refer to?
What are the main components of biological diversity?
Explain the difference between structural and behavioral adaptations with examples of each
Explain why it is important to preserve the species of the Pacific Yew Tree .
1
What is the value of variation ?

Describe how biological diversity is m	easured within a specific area (ecosystem).
Topic 2 - Habitat and Lifestyle	
Explain what is included in an organis	m's niche .
Ilustrate resource partitioning in the populations would be affected directly	e spruce tree illustration and briefly explain what warbler r, if lightning hit the top part of the tree. (p. 18)
No.	
A TAIL	
A CONTRACTOR	
THE STATE OF	
W. W. K. W.	

	diversity and large populations in Northern Canada and high diversity wis in Central and South America?
explain the differe	nce between the type of niche specialists and generalists have.
Specialists	
Generalists	
	of each type of symbiotic relationship .
ommensalism	
Mutualism	
Parasitism	
Interspecies competition	

Ocean Floor	
High Arctic	
Desert	
opic 3 - Passing	lt On
Briefly describe the	difference reproductive processes that can occur asexually.
Binary Fission	
Binary Fission	
·	
Asexual Spore	
Asexual Spore	
Asexual Spore Production	
Asexual Spore Production Cuttings	
Asexual Spore Production	
Asexual Spore Production Cuttings Budding	

Explain the process of **sexual reproduction** in plants and label the **parts of the flower**.

Explain the process of sexual reproduction i	n animals.
Explain the process of conjugation in bacteri	a.

Topic 4 - Wearing Your Genes
Explain the difference between the 2 different kinds of inherited variation.
Give 2 examples of dominant traits and 2 examples of recessive traits .
Certain characteristics are non-inherited and depend on factors other than genetics. Explain how these characteristics can be identified in a particular population of organisms living in the same environment.
Explain what mutations are and what can cause them.

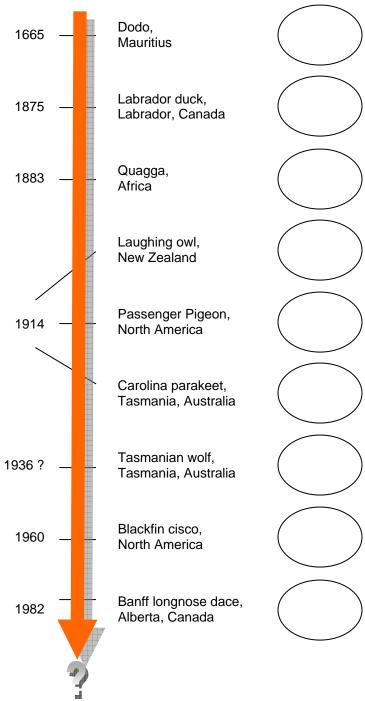
Topic 5 - When Plans Change	
Outline how DNA was discovered.	
	_
Illustrate the chemical structure of DNA that was modeled by James Watson and Francis Cric	CK.
What is the genetic code ?	
	_
What enables DNA to have so many variations with only 4 chemicals?	

Different human	cells (somatic cells)	have different life sp	oans – fill in the tabl	<u>e.</u>
()	- Brain cells			
	Red blood cells			
	Stomach lining cells			
1 1	Liver cells			
	Intestine lining cells			
17	Skin cells			
Sperm cell Egg cell	Zygote Embryo	ration demonstrates		
Some organisms disadvantages o	s can reproduce sexua f each process.	ally and asexually. E	Explain the advanta	ges and
	Adv	vantages	Dis	advantages
Asex Reproducti			_	
Reproducti Sexi				
Reproducti				

Explain how biotechnology can increase or decrease variation.			
			<u>.</u>
Describe a nacitive affect of histochnolog	w.,		
Describe a positive effect of biotechnolog	Jy.		
			
Describe a negative consequence of biot	technology.		
	. ,		
			·
Illustrate a Punnitt Square (outlines possi	bilities in offs	pring)	
	1 ,		

Identify the Classification system used by biologists to identify specific organisms.

C_____ G_____ How did Carolus Linnaeus determine a naming system that would enable scientists around the world identify specific organisms? **Topic 6 - The Best Selection** Explain the drawbacks of the process of **Artificial Selection**.


Explain what occurs during the process of each type of artificial selection technique below.

cloning	
artificial insemination	
in vitro fertilization	
genetic engineering	
Identify the purpose for the selective breeding of the following	
Western Red Spring Wheat	
Canadian Western Durum	
Canola	
What did Charles Darwin observe on the Galapagos Islands?	
Darwin explained his theory of natural selection , which could be summe	ed up in four statements:

Topic 7 - The Sixth Extinction

Identify different ways that natural extinction can occur and give examples of species lost as a result.
How does overspecialization cause extinction?
Explain the difference between extinction and extirpation .
What human activities can have an impact on species populations?

Illustrate Some Recent Species Extinctions

What is the most recent species that has become extinct?

What caused it to become extinct?

Topic 8 - Pains and Gains
How do zoos preserve biodiversity?
What are some organizations doing to preserve plant species and avoid species extinction?
Explain the difference between ex-situ and in-situ conservation programs to preserve biological diversity around the world. (Give examples)
What strategies are used to preserve biological diversity in Canada?

Biological Diversity Unit Test

- 1. The most successful life form seems to be the insect. It is a **species** a particular group of organisms that have the same structure and can...
 - A. have the same predators
 - B. consume the same food supply
 - C. cive in the same area
 - D. reproduce with each other
- 2. The main components of biodiversity occurring within organisms at a cellular level, as it describes the variety of life producing material carrying the variation information in all living things is called ...
 - A. Ecosystem diversity
 - B. Community diversity
 - C. Species diversity
 - D. Genetic diversity
- 3. Foresters might decide to burn one part of a forest because...
 - A. disease is likely to kill off all the trees in the forest, so they give nature a helping hand
 - B. sacrificing one part of the ecosystem to save the main parts is also necessary sometimes
 - C. habitat is increasing to such an extent that some forest species have to be displaced
 - D. interspecies reproduction might destroy the natural forest ecosystem balance
- 4. This compares kinds of species in a certain area with the total number of organisms in that same area, or ecosystem. It is primarily used to check on the health of an ecosystem a healthy ecosystem has a
 - A. low diversity index
 - B. high diversity index
 - C. high variation level
 - D. low variation level
- 5. What it eats, its habitat, nesting site, range and habits, what effect it has on the other populations and what effect it has on the environment is the role that an organism has within a particular ecosystem called a ...
 - A. niche
 - B. species
 - C. variation
 - D. adaptation
- Some bird species, like warblers, share resources by accessing these resources in different ways.
 They avoid direct competition for the same resource, by practicing a technique called ...
 - A. food supply sharing
 - B. nutrient cooperation
 - C. resource partitioning
 - D. interspecies sharing
- Canada supports large populations, with little diversity is the extreme environment and seasonal variations. The reason this restricts species' diversity is because of the limited ...
 - A. habitats
 - B. diseases
 - C. competition
 - D. food supply
- 8. Different types of ongoing relationships between and among all the organisms, within a particular environment, are represented by ...
 - A. food chains and food webs
 - B. niches and speciation
 - C. competition and predation
 - D. adaptation and habitation

- 9. A different type of interdependence is an association, within a certain population, between members of different species happens when two or more species need the same resource. This type of relationship which helps to limit the size of populations, of the competing species is called
 - A. mutualism
 - B. parasitism
 - C. commensalism
 - D. interspecies competition
- 10. There are different types of asexual reproduction: When the cell duplicates its contents, including its nucleus and other organelles and then splits into two cells with each one being identical (bacteria, amoeba, algae)

- only single-celled organisms reproduce in this way it is called ...
- A. budding
- B. tuber formation
- C. binary fission
- D. spore production
- 11. Spores are similar to seeds, but are produced by the division of cells on the parent, not by the union of two cells. Some fungi and green algae can also produce types of spores that move using tail-like flagella and are called ...
 - A. paramecium
 - B. flagella spores
 - C. pseudopods
 - D. zoospores
- 12. Plants continue to grow throughout their lives. The rapidly growing tips of roots and stems contain specialized cells called meristems that function in the process of ...
 - A. reproduction
 - B. transportation
 - C. photosynthesis
 - D. respiration
- 13. A primitive form of sexual reproduction in which bacteria are able to transfer genetic material directly from one cell to another is called bacterial conjugation. Because there is no increase in the number of cells, it does result in genetic...
 - A. redistribution
 - B. recombination
 - C. reconstitution
 - D. recovery
- 14. Plants which are not identical to either plant are produced as a result of ...
 - A. zygote growth
 - B. cross-fertilization
 - C. embryo development
 - D. self-pollination
- 15. The pistil is composed of the following flower parts ...
 - A. ovary, filament, stigma
 - B. stamen, stigma, ovary
 - C. anther, ovary, stigma
 - D. stigma, style, ovary

- 16. Inherited (heritable) characteristics are those traits that are passed on to offspring directly from their parents. Heritable traits include, structural and distinguishing characteristics. All of the following are heritable traits, except ...
 - A. earlobes
 - B. skin color
 - C. eye color
 - D. artistic ability
- 17. Continuous variations are differences in characteristics that have a range of possible variations. Discrete variations are differences in characteristics that have a definite form, with a limited number of possibilities. The only discrete variation included here is ...
 - A. hair color
 - B. blood groups
 - C. earlobe attachment
 - D. tongue rolling ability
- 18. Having six fingers on one hand is relatively rare in the general population. The following is the only true statement about this unique trait, "It is an inherited trait that is ...
 - A. recessive with a low frequency
 - B. recessive with a high frequency
 - C. dominant with a low frequency
 - D. dominant with a high frequency
- 19. Non-inherited characteristics are acquired and not necessarily passed on from generation to generation. Some variations may be influenced by interactions with the...
 - A. parents
 - B. scientists
 - C. engineers
 - D. environment
- 20. Mutations can cause changes in the structure of organisms, including people. Mutagens, cause mutations to occur some that have little visible effects and some that have dramatic effects. The mutagen that would have the most dramatic effect in a person would likely be ...
 - A. x-rays
 - B. gamma rays
 - C. microwaves
 - D. ultraviolet rays
- 21. The DNA molecule is like a ladder twisted into a spiral. The sides of the ladder are the same in all DNA molecules, but the rungs are what make the variations. Each rung pairs up two of the following chemicals: guanine (**G**), cystosine (**C**), adenine (**A**) and thiamine (**T**). The arrangement of these four chemicals creates the code that the cells are able to interpret. This code is called the ...
 - A. Genetic code
 - B. Mutagen code
 - C. Variation code
 - D. Chromosome code
- 22. 46 tightly coiled strands of DNA in humans represent the full compliment of ...
 - A. gametes
 - B. sperm cells
 - C. egg cells
 - D. chromosomes

23. Different human cells (somatic cells) have different life spans.

When a cell divides, each cell ends up with a complete set of chromosomes, identical to each other and identical to the original cell. This process of Mitosis occurs most frequently in ...

- A. skin cells
- B. liver cells
- C. intestine lining cells
- D. stomach lining cells

This type of sexual reproduction within a species increases ...

- A. variation
- B. mutations
- C. vulnerability
- D. specialization
- 25. Moving pieces of one strand of DNA to other cells is a relatively new technique that has emerged. In the science of genetics, this technique has enabled scientists to create individuals within a species with desirable traits and is called ...
 - A. biodiversity
 - B. biomagnification
 - C. genetic diversity
 - D. genetic engineering
- 26. One of the first uses of modern biotechnology was to move a human gene into bacteria. By doing this, bacteria were able to produce as a waste product, large quantities of a drug, used by diabetes patients, called ...
 - A. Aspirin
 - B. Insulin
 - C. Tylenol
 - D. Quinine
- 27. Aquaculture is becoming an increasingly important method of mass production fish farming, however, if these 'special' fish make it out into the open ocean, what organisms be negatively affected?
 - A. fishermen and biologists
 - B. predator populations
 - C. natural fish population
 - D. large mammal population

- 28. To produce purebred organisms, a breeder would choose purebred parents, those parents whose ancestors have produced only the desired characteristic. If a breeder chooses two different 'true-breeds', then the offspring produced would be a ...
 - A. domestic
 - B. mutant
 - C. gamete
 - D. hybrid
- 29. Long before the science of genetics started, people tried to reproduce organisms with only the most preferred traits, by allowing only those organisms with the desirable traits to reproduce. This method was not always successful, but it provided scientists with information to help them determine which alleles were responsible for specific traits through ...
 - A. organization
 - B. trial and error
 - C. scientific research
 - D. opinion and thought
- 30. The process of intervention to produce more desirable organisms takes a long time to see results usually many generations. Speeding up the artificial selection process by using cells to make new cells is called ...
 - A. cloning
 - B. in vitro fertilization
 - C. genetic engineering
 - D. artificial insemination
- 31. The specimens and observations made by Charles Darwin about the diversity of life on the Galapagos Islands is detailed in his most famous book, *Origin of the Species*. Darwin was the first scientist to explain that selection process occurred ...
 - A. automatically
 - B. instinctively
 - C. artificially
 - D. naturally
- 32. Other examples that can be explained using Darwin's theory include what happened to this insect in industrialized England. The change in coloration enabled this species of moth to survive. The species is known as the ...
 - A. Salted Moth
 - B. Sugared Moth
 - C. Peppered Moth
 - D. Black and White Moth
- 33. Diseases and natural events occur all the time and when they do, the loss of an entire species, within a particular area, causes that species to be ...
 - A. extinct
 - B. extirpated
 - C. threatened
 - D. Endangered
- 34. Scientists estimate that 99% of all species that have ever existed on the Earth are now ...
 - A. extinct
 - B. extirpated
 - C. threatened
 - D. Endangered
- 35. The stresses of urbanization and habitat intrusion, by farming and industry, have resulted in extinction, population decreases and degradation of ecosystems, all of which reduce ...
 - A. variation
 - B. genetic selection
 - C. biological diversity
 - D. ecological renewal

- 36. The Grizzly Bear helps us to determine the human impact on an ecosystem. This large carnivore's ability to survive or disappear is historically a sign that human interference in an ecosystem is occurring or not. Grizzly Bears are considered to be ...
 - A. Bioaccumulated species
 - B. Biomagnified species
 - C. Biodiverse species
 - D. Bioindicator species
- 37. Tropical rainforest are being clear-cut to make way for farmland, cattle ranches, pineapple and coffee plantations, and fuel. Loss of rainforests, mean the extinction of specialized organisms depending on the forests for food and protection. The impact of population is not shared equally around the globe. The hardest hit, where diversity is most threatened, are in ...
 - A. developing regions
 - B. undeveloped regions
 - C. remote regions
 - D. isolated regions
- 38. The major cause of the decline and eventual extirpation of the plains Bison, as well as the extinction of the passenger pigeon and the black-tailed prairie dogs was ...
 - A. disease
 - B. loss of habitat
 - C. over-hunting
 - D. loss of food supply

Zoos didn't become public until the early 1800's – in London. They were not originally started to preserve diversity. They were ...

- A. exotic collections for private collectors
- B. specialized keepsakes for royalty
- C. black market species for criminals
- D. formed to prevent species over-population
- 40. The preservation of biological diversity depends on local efforts and global efforts. The **Canadian Biodiversity Strategy** was created to preserve biodiversity in Canada in ...
 - A. 1850

39.

- B. 1905
- C. 1950
- D. 1995
- 41. Global Treaties: 1975 Convention on International Trade of Endangered Species (CITES) is aimed at preventing endangered plants and animals from being imported or exported. It is...
 - A. harmful to the health of participating individuals and their families
 - B. illegal to buy or sell animals or animal parts identified for protection
 - C. unethical to take advantage of animals that are endangered or threatened
 - D. Immoral to kill animals without the proper licenses or certificates

Complete the following **Numerical Response** Questions

NR1 - Match the type of Asexual Reproduction described below.				
1- the parent produces a smaller version of itself				
2- the parent cell splits in two				
3- reproduction not involving seeds	0	0	0	0
4- reproduction similar to seeds,	1	1	1	1
but produced by the division of cells	2	2	2	2
	3	3	3	3
	4	4	4	4
	5	5	5	5
Vegetative Spore Binary fission Budding	6 7	6 7	6	6
reproduction production	8	8	7 8	7
·	9	9	9	8
	9	9	9	9
NR2 - Interdependence of species within the environment is necessary for survival. Symbiosis is an association between members of different species.				
1- one organism benefits the other doesn't	0	0	0	0
2- one organism benefits, the other is harmed	1	1	1	1
3- one organism appears to be like another organism	2	2	2	2
4- both organisms benefit	3	3	3	3
1 Sour Organionio Sonone	4	4	4	4
	5	5	5	5
	6	6	6	6
commensalism mutualism parasitism mimicry	7	7	7	7
	8	8	8	8
	9	9	9	9
NR3 - The reduction of diversity has resulted in species being listed on Protection Lists. Match the treat to the term it describes.				
	<u> </u>			_
1- none in a local area	0	0	0	0
2- none in the world	1	1	1	1
3- very few left in the world	2	2	2	2
4- numbers are being reduced	3	3	3	3
	4	4	4	4
	5	5	5	5
	6	6	6	6
	7	7	7	7
Endangered Extirpated Threatened Extinct	8	8	8	8
	9	9	9	9

Biological Diversity Topic Quiz – Answer Keys

	Tonio 4		1	С		4	D	7	В		
Topic 1 Diversity and Survival			2	D		5	Α				
		3	Α		6	В					
			1	Α		4	D	7	D		
Topic 2 Habitat and Lifestyle			2	В		5	В	8	C		
			3	C		6	A				
	Topic 3		1	В		5	C	9	<u>B</u>		
							2	С		6	С
	Passing it On		3	D		7	В	11	C		
			4	Α		8	Α	12	Α		
			1	В		4	С	7	В		
10.	Topic 4 Wearing Your Genes			D		5	С				
VV				Α		6	D				
			1	С		5	С	9	D		
	Taula F	-	2	A		6	D	10	В		
W	Topic 5 hen Plans Chan	ne	3	B		7	В	11	С		
•	Tien i lans Onang	gc	4	D		8	A	12	D		
			4	ע		0	A	12	U		
	Topic 6			В		3	С	5	D		
T	The Best Selection		2	Α		4	D	6	С		
			1	В		4	С	7	C		
	Topic 7 The Sixth Extinction				2	В		5	D	8	C
TI					The Sixth Extinction		3	A		6	A
			3	A		0	A				
	Topic 8		1	Α		3	D	5	В		
	Pains and Gains		2	В		4	D				
Unit ⁻	Test – Answer Ko	ev									
1	D	13		В	25		D	37	Α		
2	D	14		В	26		В	38	С		
3	В	15	D		27		С	39	Α		
4	В	16	D		28		D	40	D		
5	Α	17	Α		29		В				
6	С	18	С		30		Α				
7	D	19		D	31		D	NR1	3421		
8	Α	20		В	32		С	1417.1	J72 I		
9	D	21		Α	33	_	В	NR2	1423		
10	С	22		D	34		Α		1720		
11	D	23		D	35		С	NR3	3142		
12	Α	24		Α	36		D		J172		