## Algebra - Things to Remember!

| Scientific Notation $3.2 \times 10^{13}$<br>The first number must be rectard:<br>$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$<br>0! = 1                                                                                                                                             |                                                                                                                       | Exponents:<br>$(-3)^2 \neq -3^2$<br>$2^0 = 1$<br>$4^{-3} = \frac{1}{4^3}$                                                                                                                                        | $x^{m} \cdot x^{n} = x^{m+n}$ $(x^{n})^{m} = x^{n \cdot m}$ $\frac{x^{m}}{x^{n}} = x^{m-n}$ $(xy)^{n} = x^{n} \cdot y^{n}$ | Properties of Real N<br>Commutative Property<br>Associative Property<br>Distributive Property<br>Identity:<br>Inverse:<br>Zero Property:                                                                                                                                                                                                                               | ty: $a + b = b + a$<br>: $a+(b+c) = (a+b)+$ | $ab = ba$ $a(bc) = (ab)c$ $a \cdot 1 = a$ $a \cdot (1/a) = 1$ $a \cdot 0 = 0$                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------|
| Undefined:<br>$\frac{6}{7-x} \text{ is undefined when } x = 7 \text{ since}$ $\text{the denominator} = 0.$ Multiply: (distribute or FOIL) $(x+3)(x+2) = x \cdot x + x \cdot 2 + 3 \cdot x + 3 \cdot 2$ $= x^2 + 5x + 6$ $(a+b)^2 = a^2 + 2ab + b^2$ $(a-b)^2 = a^2 - 2ab + b^2$ |                                                                                                                       | Polygons and sides: triangle – 3 quadrilateral – 4 pentagon – 5 hexagon – 6 septagon – 7 octagon – 8 nonagon – 9 decagon – 10 dodecagon - 12                                                                     |                                                                                                                            | Degree: Degree of monomial = sum of exponents  4x³ is of degree 3 x²y³ is of degree 5  Solving Equations:  1. Deal with any parentheses in the problem. 2. Combine similar terms on same side of = sign. 3. Get the needed variables on the same side of = sign. 4. Isolate the needed variable by add or subtract. 5. Find the needed variable by divide or multiply. |                                             |                                                                                                  |
| Add Fractions: Get the common denominator: $\frac{5x}{6} + \frac{3x}{2} = \frac{5x}{6} + \frac{9x}{6} = \frac{14x}{6} = \frac{7x}{3}$                                                                                                                                           |                                                                                                                       | Factor:<br>Look for a GCF (greatest common factor)<br>Factor binomial or trinomial.<br>$a^2 - b^2 = (a+b)(a-b)$                                                                                                  |                                                                                                                            | (x-3)(x-2)=0                                                                                                                                                                                                                                                                                                                                                           | Set = 0. Factor. Find roots                 | Interval Notation:<br>$(1,5) \leftrightarrow 1 < x < 5$<br>$[1,5] \leftrightarrow 1 \le x \le 5$ |
| Inequalities:<br>$5-3x \le 13+x$ Remember to<br>$-3x \le 8+x$ change direction<br>$-4x \le 8$ of inequality when<br>$x \ge -2$ mult/div by a negative.                                                                                                                          |                                                                                                                       | Circles:<br>Equation of circle center at origin:<br>$x^2 + y^2 = r^2$ where r is the radius<br>Equation of circle not at origin:<br>$(x-h)^2 + (y-k)^2 = r^2$ where $(h,k)$ is<br>the center and r is the radius |                                                                                                                            | Passes the vertical line test. A set of ordered pairs in which each x element has only one y element associated with it.                                                                                                                                                                                                                                               |                                             | Parabola:<br>$y = ax^2 + bx + c$<br>Axis of symmetry:<br>$x = \frac{-b}{2a}$<br>Roots: where the |
| $x = abscissa, y = or$ <b>Slope:</b> $m = \frac{vertical\ chan}{horizontal\ cha}$                                                                                                                                                                                               | Equations of Lines:<br>y = mx + b slope-intercept<br>y = mx + b slope-intercept<br>$y = y_1 = m(x - x_1)$ point-slope |                                                                                                                                                                                                                  | -intercept                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                      |                                             | graph crosses the <i>x</i> -axis.                                                                |

# **Perimeter:** add the distances around the outside.

**Circumference:** 
$$C = 2\pi r = \pi d$$

### **Pythagorean Theorem:**

8, 15, 17

7, 24, 25

Right Triangles only. 
$$c^2 = a^2 + b^2$$
  
Triples: 3, 4, 5  
5, 12, 13

$$\sin \angle A = \frac{o}{h}$$
;  $\cos \angle A = \frac{a}{h}$ ;  $\tan \angle A = \frac{o}{a}$ 

**Trig:** Right triangles only

Angle of elevation: from horizontal line of sight up. Angle of depression: from horizontal line of sight down.

#### Area:

$$A_{triangle} = \frac{1}{2}bh$$
 
$$A_{equilateral\ triangle} = \frac{s^2\sqrt{3}}{4}$$

$$A_{\text{rectangle}} = bh$$

$$A_{\text{square}} = bh = s^2$$

$$A_{\text{parallelogram}} = bh$$

$$A_{\text{rhombus}} = bh = \frac{d_1 \cdot d_2}{2}$$

$$A_{\text{trapezoid}} = \frac{1}{2}h(b_1 + b_2)$$

$$A_{\rm circle} = \pi r^2$$

$$A_{\text{sector of circle}} = \frac{n}{360} \pi r^2$$

$$A_{\text{semicircle}} = \frac{1}{2}\pi r^2$$

$$A_{\text{quarter circle}} = \frac{1}{4}\pi r^2$$

#### **Volume and Surface Area:**

$$V_{
m rectangular\ solid} = l {ullet} w {ullet} h$$

$$SA_{\text{rectangular solid}} = 2lh + 2hw + 2lw$$

$$V_{\text{cylinder}} = \pi r^2 h$$

$$SA_{\text{closed cylinder}} = 2\pi rh + 2\pi r^2$$

#### Permutations:

Arrangement in specific order.

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

$$0! = 1$$

#### Data:

5 Statistical Summary: minimum, maximum, median, 1<sup>st</sup> quartile, 3<sup>rd</sup> quartile

Quartiles divide data into 4 equal parts.

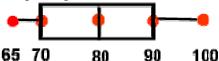
Percentiles divide data into 100 equal parts.

Percentile rank of score  $x = \frac{number\ of\ scores\ below\ x}{n} \cdot 100$ , where *n* is

the number of scores.

Mean = average.

Mode = most often (may be more than one answer).


Median = middle.

Outliers = values that are far away from the rest of the data.

Median best describes data if outliers exist.

Range = difference between the maximum and minimum values.

**Box and Whisker Plot:** The first and third quartiles are at the ends of the box, the median is indicated with a vertical line in the interior of the box, and the maximum and minimum are at the ends of the whiskers. Box-and-whisker plots are helpful in interpreting the distribution of data.



## Conditional probability:

P(B/A) means probability of B given A has occurred.

#### **Sets:**

 $A \cup B$  Union - all elements in both sets.

 $A \cap B$  Intersection - elements where sets overlap.

A' Complement - elements not in the set.

 $\{\}$  or  $\emptyset$  means null set.

#### **Exponential Growth and Decay:**

Decay:  $y = ab^x$  where a > 0 and 0 < b < 1

Growth:  $y = ab^x$  where a > 0 and b > 1