Addressing Inequities in the Pediatric Asthma Patient

Wanda Phipatanakul, M.D., M.S.

wanda.phipatanakul@childrens.harvard.edu

S. Jean Emans, MD, Professor of Pediatrics
Harvard Medical School
Director, Clinical Research Center
Boston Children's Hospital

Disclosures

Wanda Phipatanakul, M.D., MS

- Consultant/Honoraria: GlaxoSmithKline, Genentech, Novartis, Regeneron
- · Funding: NIH
- Clinical Trial Support/Medications/Grant Support: Genentech, Novartis, Regeneron, GlaxoSmithKline, Thermo Fisher, Monaghen, Alk Abello, Lincoln Diagnositics, Kaleo
- Neither I nor my spouse/partner have any other relevant financial relationships with the manufacturer(s) or any commercial product(s) and/or provider of commercial products or services discussed in this CME activity.
- I do not intend to discuss unapproved/investigative use of commercial product(s)/device(s) in my presentation.

Objectives

- 1. To further our understanding of community and environmental risk factors as social determinants of health
- 2. To identify interventions to reduce risk and even prevent disease outcomes
- 3. To identify predictors of response to these interventions

Case

- 7-year old Puerto Rican boy with frequent wheezing episodes.
- Referred to A/I/P specialist but has "no showed" to these two scheduled visits.
- Parents are divorced and mother immigrated 18 months ago
- <u>Lapse in Medicaid coverage</u> after family <u>evicted</u> from apt as landlord <u>didn't pay</u> mortgage
- Lives in a <u>shelter</u> near a <u>major expressway</u>
- Flovent 110mcg 2puffs twice daily w/o spacer (no access)
- Allergen skin testing demonstrates positives to mouse allergen and dust mite
- He attends an <u>urban school</u> and notices his asthma symptoms are more pronounced at school

What are some Social Determinants of Health to consider in this scenario?

- Social determinants of health (SDOH) defined by WHO as "conditions in which people are born, grow up, live, work and age.
- Influence health, risk of illness and life expectancy.
- Social inequities in health-the unfair and avoidable differences in health status across groups in society- due to uneven distribution of social determinants.

Davis et al JACI 2021, https://health.gov/healthypeople/objectives-and-data/social-daterminants-health, https://www.cdc.gov/healthyyouth/disparities/index.htm

Addressing inequities in asthma by focusing on children's environments

For the past 20 Dr. Wanda Phipatanakul has been asking why asthma hits so hard in urban and lower-income areas. (Image: AdobeStock/Illustration: Sebastian Stanklewicz, Boston Children's Hospital)

https://answers.childrenshospital.org/asthma-inequities/

What do we know about HOME exposures and health disaprities?

Long-term exposure to Radon is associated with asthma		Short-term exposure to Radon is associated with respiratory symptoms in urban youth									
diagnosis in urban youth			Radon exposure	Wheezing		Nighttime difficulty breathing		Nocturnal cough		Missed school days	
Radon	Asthma di	agnosis	(moving avg)	Home	School	Home	School	Home	School	Home	School
exposure (moving avg)	Home	School	1 month	1.05 (0.65- 1.67)	1.76 (0.89- 3.48)	0.79 (0.39- 1.62)	2.18 (0.88- 5.42)	1.21 (0.77- 1.89)	1.55 (0.82- 2.95)	1.18 (0.64- 2.19)	5.27 (2.09- 13.2) ^b
1 month	1.2 (0.7-1.92)	1.18 (1.62-6.5) ^b	5 month	1.03 (0.65- 1.62)	2.68 (1.34- 5.38) ^b	0.80 (0.40- 1.61)	3.53 (1.38- 9.04) ^b	1.20 (0.78- 1.85)	2.36 (1.23- 4.53) ^b	1.12 (0.61- 2.04)	7.63 (2.91- 20) ^b
5 month	1.07 (0.67-1.69)	1.48 (2.15-9.06) ^b	7 month	1.16 (0.71- 1.89)	2.91 (1.34- 6.33) ^b	0.98 (0.48- 1.99)	4.46 (1.58- 12.54) ^b	1.37 (0.86- 2.19)	2.5 (1.21- 5.18) ^a	1.24 (0.66- 2.33)	8.98 (3.12- 25) ^b
7 month	1.26 5.19 Long-term exposure to Radon is associated with respiratory symptoms in urban youth										
12 month	1.41 (0.84-2.34) /	Greater	12 month	1.2 (0.71- 2.01)		1.08 (0.52- 2.23)		1.50 (0.91- 2.46)		1.36 (0.71- 2.61)	
24 month	1.61 (0.93-2.79)	effect size with longer	24 month	1.34 (0.77- 2.33)		1.15 (0.52- 2.52)		1.76 (1.03-3) ^a		1.48 (0.74- 2.98)	
36 month	2.01 (1.09-3.69) ^a	exposure window	36 month	1.55 (0.84- 2.84) 1.67		1.27 (0.54- 2.96)		2 (1.11- 3.62) ^a 2.24		1.83	
48 month	2.15 (1.10-4.17) ^a		48 month	(0.86- 3.22) 1.75		(0.52- 3.31) 1.31		(1.17- 4.25) ^a 2.43		(0.79- 4.22) 1.98	
60 month	2.25 (1.11-4.54) ^a	V	60 month	(0.87- 3.51)	inatanak	(0.49- 3.48)	Gaffin .IN	(1.23- 4.78) ^b	ulmonolo	(0.81- 4.8)	

Some lessons learned for far...

- The home is important in asthma morbidity and racial disparities
- Multi-faceted home interventions help and could potentially modify the disease
- Reducing mouse allergen in homes can work as well as ICS and benefits can last longer
- School environment is important in asthma disparities even after adjusting for home (particularly, mouse/mold allergen, pollutants, (radioactive particles?)) and other risk factors (obesity, sleep issues, inflammatory markers) augment this risk
- Can we do anything about this? Can we intervene in the schools and make an impact?

Classroom HEPA filtration in Students Exposed to Higher Indoor Classroom Mold than at Home

	HEPA (N=43)	Sham (N=38)	P
Group 1 (indoor mold)	-5.44	-3.30	0.025
Group 2 (outdoor mold)	-4.15	-3.93	0.330
Environmental Relative Mold	-1.29	+0.63	0.026
Index (ERMI) FEV1% increase	4.69	0.47	0.034

Vesper, S, et al 2022 J Asthma

EDITORIAL

JAMA

School Classrooms as Targets to Reduce Allergens and Improve Asthma

..." implementing allergen avoidance with <u>targeted</u> <u>environments and in selected patients</u> may improve the likelihood of success...."

- "Childhood asthma often is a lifelong disease"
- "Early life efforts to improve asthma control that are safe and effective may diminish consequences and need for systemic corticosteroids..."
- "Allergen avoidance for asthma is <u>safe</u>, <u>rational</u>, <u>and remains</u> <u>worthy of continued consideration and study</u>"

Taking What We Learned in Schools to Precision Medicine

An asthma associated IL4R polymorphism Increases Airway Inflammation by Conversion of regulatory T cells to Th₁₇-like Cells nature medicine • IL-4Rα-Q576R polymorphism-(glutamine (Q) to arginine R **** ☐ Q576/Q576 substitution at position 576 of the IL-■ Q576/R576 12 -4Rα) ■ R576/R576 - R allele frequency 68% CD4*FOXP3 IL-17 (%) (blacks/hispanics); 20% (whites) nature immunology - R allele associated with severe asthma - Unique among IL4R nature polymorphisms, directly drives T_H2 to T_H17 inflammatory response in the airways - Dose response relation with Massoud et al, Nat Med 2016; 22(9):1013-22 severity Hani H, et al Nature Immunol November, 2020 - Augmented by obesity Babat, S, et al Nature March 2021

Biologics in Disease Modification and Prevention

In Summary...

- School environment is important in asthma morbidity, where nearly every child spends their day
- We can intervene on relevant school specific exposures- but more sustained measures are needed to have lasting benefit on health
- Decade of community relationships allow us to expand our work into understanding of risk factors and intervention (i.e. obesity, metabolic syndrome, cytokines), microbial and other exposures, and gene x environment interactions in a home/school setting and its effects on disease Timeliness of results can help inform future strategies to provide healthy environments for kids in school- which is critical in the wake of the pandemic

Future Directions

- Biologics have changed the landscape on immune based therapies in the treatment of asthma necessitating Precision-**Biomarker Driven Approaches**
- NIH has several ongoing major efforts in Precision Medicine 1)genotype stratified precision therapy (IDEA), 2) novel therapies in an adaptive trial design (PreCISE)
- Understanding the role of IgE targeted biologics in allergic and rhinovirus induced disease have paved the way to consider immune based strategies to prevention (PARK)
- In the next decade we will have major advancements in understanding what may work in prevention and modifying disease progression -stay tuned

Acknowledgements/Funding

COLLABORATORS

- Talal Chatila, MD-Immunology/Genetics
- Diane Gold, MD, MPH-Environment
- Elliot Israel, MD-Clinical Trials
- Petros Koustrakis, PhD-Monitoring
- Carter Petty, MS-Stats
- **Brent Coull, PhD-Stats**
- Andrea Baccarelli, MD, Molecular Bio
- Susan Redline, MD, Sleep, EASY
- Hans Oettgen, MD, PhD- IgE mechanism

K-R from Lab

- Jon Gaffin, MD, MMSc R01 ES030100
- Peggy Lai, MD, MPH, R01Al144119, R21 Al 17965/ R21178155
- Melody Duvall, MD, PHD R01 NHLBI

K23 Trainees

- Margee Louisias, MD Bristol Myers Trial Award, NIH LRP
- Marissa Hauptman, MD MPH HD0757270, PEPR GIS, K23
- William Sheehan, MD K23 Al104780,DC
- Perdita Permaul, MD, K-23 Al123517, LRP, NY
- David Kantor, MD, PhD, K-23 HL138162
- Lisa Bartnikas, MD, K23 Al125732, LRP
- Elena Crestani, MD K23 Al146289
- Marike Rosenbaum, DVM, K23 ES 035460
- Tina Banzon, MD K23 ES 03545
- Medine Jackson-Browne, PhD- Diversity Supplement- K23

U01 Al143514- IDEA (Phipatanakul/Chatila) R01AI073964 /U01 AI 110397 (SICAS 1-SICAS2) (Phipatanakul)

U01 AI 08328 MAAIT (Matsui/Phipatankul) R01HL137192 (Phipatanakul) EASY-SLEEP U01Al126614(Phipatanakul) PARK

Mech-Oettgen- Genentech

K24 Al 106822 (Phipatanakul) U10HL146002 (Levy/Israel SARP) U19AR069526- PEPR (Lai/Paller)

IOF GIS/Activity FitBit IOF U01 HL 1300045 (Martinez)- ORBEX

UG1 HL139124 (Israel- PreCISE) R01Al065617/R21 Al 132843 (Chatila) U01Al152033-Geha/Phipatanakul- ADRN

U01 AI 160087- Phipatanakul/Chatila-CAUSE SICAS 3

- Carmela Socolovsky, MD Pulmonary
- Sigfus Gunlaugsson, MD Pulmonary
- Lana Mukharesh, MD Pumonary
- Julia Lee, MD, Pulmonary
- Ye Sun, Bob Sun, MD Pulmonary
- Ellen Conroy, MD, Allergy/Immunology
- Nicole Comfort F31 ES030973
- Sevni Gueve-Ndiave, MD- Sleep Fellow/ Faculty

SARP

Preventing Asthma in High Risk Kids (PARK)

PI: Phipatanakul U01Al126614 clinical trials.gov NCT02570984 parkstudy.org

- Elliot Israel, MD
- DCC-Penn State University- Dave Mauger, PhD
- · Hans Oettgen, MD, PhD, Mechanistic Lead

Clinical Centers

- Boston- Wanda Phipatanakul, MD, MS
- Atlanta Anne Fitzpatrick, PhD, APRN
- Chicago- Elizabeth Lippner, MD
- Cincinnati- Theresa Guilbert, MD, MS
- Denver- Andy Liu, MD
- Hartford- Craig Lapin, MD
- Houston- Carla Walker, MD
- · Indianapolis- Kirsten Kloepfer, MD
- Madison –Daniel Jackson, MD
- San Diego-Sydney Leibel, MD
- St. Louis Jeffrey Stokes, MD
- Phoenix- Cindy Bauer, MD
- · Washington, DC- Stephen Teach, MD

NIAID, Genentech/Novartis, Alk Abello, GSK, Lincoln Diagnostics Kaleo, Monaghan, Thermo Fisher asthma@childrens.harvard.edu 857-218-5336 wanda.phipatanakul@childrens.harvard.edu

