

Generative AI and Medical Diagnosis

Lowell General Hospital Grand Rounds
December 17, 2025

Arjun (Raj) Manrai, PhD
Arjun_Manrai@hms.harvard.edu
@arjunmanrai

HARVARD
MEDICAL SCHOOL

DEPARTMENT OF
Biomedical Informatics


NEJM
AI

Agenda

1. Lab and research overview
2. Intro to the *NEJM* Clinicopathological Conferences (CPCs)
3. Intro to “Dr. CaBot”
4. CaBot solving an NEJM CPC

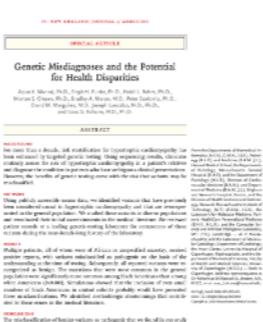
Manrai Lab

Computation to Improve Medical Decision Making

HARVARD
MEDICAL SCHOOL

DEPARTMENT OF
Biomedical Informatics

Recurring Themes


Traditional clinical equations

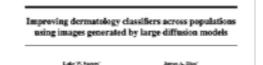
- Quantifying clinical implications of changing risk equations (e.g. eGFR, PFTs, ASCVD)
- Genetic (mis)diagnosis
- Who is “normal”? Lab reference ranges
- Race, environment, SDOH

JAMA 2021

Research

NEJM 2016

NEJM 2024

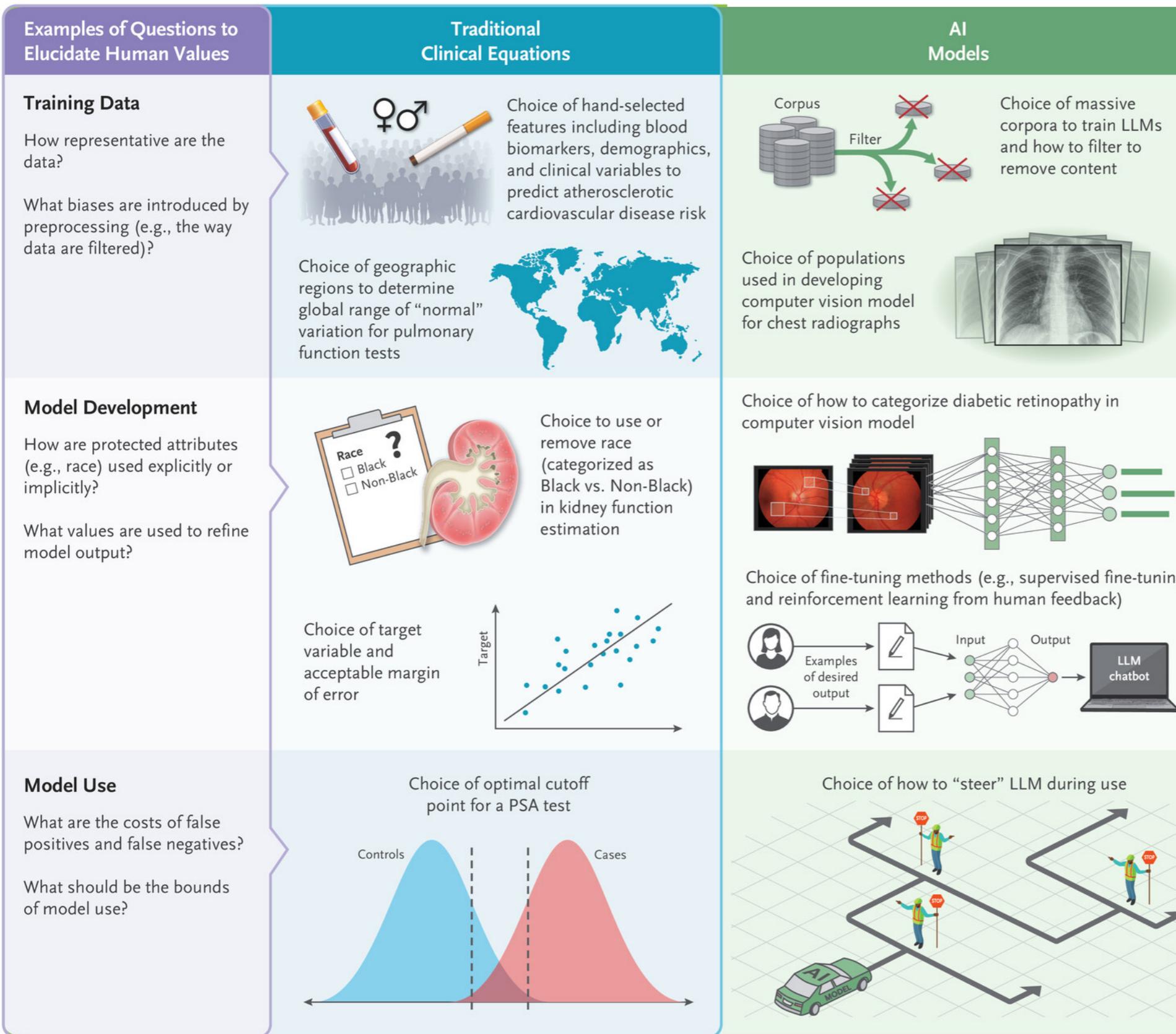

JAMA 2018

Artificial intelligence for medicine

- LLM & multimodal diagnostic reasoning, automated assessment
- Fine-tuning, alignment
- Human-machine collaboration
- Role of synthetic data from diffusion models (e.g. derm)

CVPR 2021

NeurIPS
SynData4ML
2022



Harrison's
2021
NEJM 2023

Clinical Impact

NEJM
AI

1) Many lessons for AI from traditional clinical equations

2) Behavior (and values) shaped by: (a) training data, (b) model development, (c) model use

ORIGINAL ARTICLE | SEP 26, 2024 | FREE

Four-Channel ECG as a Single Source for Early Diagnosis of Cardiac Hypertrophy and Dilation—A Deep Learning Approach

H. Zhu and Others

A large-scale cardiac hypertrophy, dilation, and enlargement database suggests that, in over half of patients with cardiac hypertrophy, dilation, and enlargement, cases can potentially be detected during routine electrocardiogram monitoring.

PERSPECTIVE | OCT 10, 2024

The EU AI Act: Implications for U.S. Health Care

S. Porsdam Mann, I.G. Cohen, and T. Minssen

A perspective on how the major requirements of the European Union's AI Act may impact the work of physicians and medical innovators in the United States over the next few years.

NEJM AI Grand Rounds

NEJM AI Grand Rounds, hosted by Arjun (Raj) Manrai, Ph.D. and Andrew Beam, Ph.D., features informal conversations with a variety of unique experts exploring the deep issues at the intersection of artificial intelligence, machine learning, and medicine. You'll learn how AI will change clinical practice and healthcare, how it will impact the patient experience, and about the people who are pushing for innovation. Whether you are an AI researcher or a practicing clinician, these conversations will enlighten and surprise you as we journey through this very exciting field. Produced by NEJM Group.

Listen on:

Wednesday Jun 18, 2025

Google's Efforts to Build Patient-Facing AI: A Conversation with...

Wednesday Sep 27, 2023

Mark Cuban on AI, Trust in Health Care, and Skip Bayless

Wednesday Dec 18, 2024

The Economics of AI: A Conversation with Larry Summers

HST: We empower future pioneers in human health

Welcome to the Harvard-MIT Program in Health Sciences and Technology. Here, the next generation of clinician-scientists and engineers learns to harness the combined power of science, engineering, and medicine, to translate research findings into clinical practice, and to improve human health.

All MEMP students must complete:

- Biomedical Sciences Core Requirements
- Biomedical Sciences Restricted Electives
- Clinical Coursework Requirements

Biomedical Sciences Core Requirements

- Human Pathology (HST030/031 or HST034/035)
- Molecular Genetics in Modern Medicine (HST160/161)
- Cardiovascular Pathophysiology (HST090/091)

Biomedical Sciences Restricted Electives

Two full courses required*

- Human Functional Anatomy (HST010/011)
- Musculoskeletal Pathophysiology (HST020/021)*
- Respiratory Pathophysiology (HST100/101)**
- Renal Pathophysiology (HST110/111)**
- Neuroscience (HST130/131)
- Molecular Diagnostics and Bioinformatics (HST162/163) *
- Principles of Biomedical Imaging (HST164/HST165)*
- Cellular and Molecular Immunology (HST175/176)

* May combine two half-courses to count as one full course

** Must choose at least one of HST100, HST110

Clinical Coursework Requirements

All MEMP students must complete two clinical courses:

- HST201: Introduction to Clinical Medicine and Medical Engineering I
- HST202: Introduction to Clinical Medicine and Medical Engineering II

HST201W and HST202W are offered at the West Roxbury Veteran's Administration Hospital. I offered at Mt. Auburn Hospital. Students must complete both HST201 and HST202 at a single

Founded by Richard C. Cabot
 Eric S. Rosenberg, M.D., *Editor*
 David M. Dudzinski, M.D., Meridale V. Baggett, M.D., Kathy M. Tran, M.D.,
 Dennis C. Sgroi, M.D., Jo-Anne O. Shepard, M.D., *Associate Editors*
 Emily K. McDonald, Tara Corpuz, *Production Editors*

Case 23-2022: A 49-Year-Old Man with Hypoglycemia

Amy W. Baughman, M.D., Nancy J. Wei, M.D., Peter F. Hahn, M.D., Ph.D.,
 Brenna W. Casey, M.D., and M. Lisa Zhang, M.D.

PRESENTATION OF CASE

Dr. Mollie Sands (Medicine): A 49-year-old man was admitted to this hospital because of hypoglycemia.

The patient had been well until 3 hours before this admission, when altered mental status developed while he was at work. During a meeting, his colleagues noticed that he was not paying attention or participating in the conversation, which was atypical of the patient. Instead, he was fidgeting and mumbling as though talking to another person. When his mobile telephone rang, he allowed it to continue ringing.

Two hours before this admission, the patient was found by colleagues on the floor of a conference room. His eyes were open, but he was obtunded and making nonpurposeful movements. Emergency medical services were called. On evaluation, a fingerstick glucose measurement was 39 mg per deciliter (2.2 mmol per liter; reference range, 70 to 109 mg per deciliter [3.9 to 6.1 mmol per liter]). Intravenous dextrose was administered, and the patient was brought to the emergency department of this hospital for further evaluation.

On arrival at the emergency department, the patient was obtunded and did not react to sternal rub. Additional intravenous dextrose was administered, and a dextrose infusion was started. The patient's mental status improved, and he was able to provide additional history. That morning, he had felt that he was in a "dreamlike" state; there were no other symptoms. The altered mental status had resolved, but he could not recall most events of the morning, including the meeting that had taken place 3 hours before admission.

Review of symptoms was notable for unintentional weight gain of one pant size during the past 3 months, as well as intermittent morning dizziness during the past 3 years, which would resolve after the patient ate candy or breakfast. He reported no recent illness, depression, anxiety, change in activity or exercise, or change in intake of food or drink. On a typical day, he had breakfast at 5 a.m., a second breakfast at 10 a.m., lunch at 1 p.m., dinner at 6 p.m., and a snack at 8 p.m. The patient had last eaten approximately 7 hours before presentation to the emergency department.

Two years earlier, the patient had had an episode of drooping and decreased sensation of the left side of the face and difficulty enunciating words, which occurred while he was at work. He presented to the emergency department of this hospital. The blood glucose level was 64 mg per deciliter (3.6 mmol per liter), and testing for Lyme disease was negative. He received a diagnosis of Bell's palsy and was treated with prednisone and acyclovir; the symptoms resolved. Two months later, the patient established care in the primary care clinic of this hospital. Routine laboratory testing revealed a blood glucose level of 46 mg per deciliter (2.6 mmol per liter).

The patient took vitamin B₁₂ and vitamin D supplements. He took no other medications and had no known drug allergies. He drank alcohol rarely and did not smoke tobacco or use illicit drugs. Sixteen years earlier, he had immigrated to the United States from Southeast Asia and now lived alone in an urban area of New England. He worked as a registered nurse. His father and brother had type 2 diabetes and used insulin.

On examination, the temperature was 35.7°C, the heart rate 82 beats per minute, the blood pressure 146/76 mm Hg, and the respiratory rate 14 breaths per minute. The body-mass index (the weight in kilograms divided by the square of the height in meters) was 27.6. The patient appeared well. He had no hepatosplenomegaly or skin hyperpigmentation, and the remainder of the physical examination was normal.

On arrival at the emergency department, the blood glucose level was 36 mg per deciliter (2.0 mmol per liter); after the administration of dextrose, a fingerstick glucose measurement was 158 mg per deciliter (8.8 mmol per liter). The complete blood count and blood electrolyte levels were normal, as were the results of liver-function and kidney-function tests. The glycated hemoglobin level was 5.4% (reference range, 4.3 to 6.4). Serum and urine toxicologic panels were negative. Laboratory test results are shown in Table 1. The patient was admitted to this hospital.

A diagnostic test was performed.

Table 1. Laboratory Data.*

Variable	Reference Range, Adults†	On Admission
Blood		
Alanine aminotransferase (U/liter)	5–34	33
Aspartate aminotransferase (U/liter)	6–55	28
Alkaline phosphatase (U/liter)	45–115	105
Lipase (U/liter)	13–60	67
Albumin (g/dl)	3.3–5.0	4.4
Sodium (mmol/liter)	135–145	138
Potassium (mmol/liter)	3.4–4.8	3.8
Chloride (mmol/liter)	98–107	103
Carbon dioxide (mmol/liter)	21–30	24
Urea nitrogen (mg/dl)	8–25	12
Creatinine (mg/dl)	0.60–1.50	1.03
Glucose (mg/dl)	70–109	36
Serum toxicologic panel		
Ethanol (mg/dl)	0.0	0.0
Salicylates (mg/dl)	0.0–20.0	<0.3
Acetaminophen (µg/ml)	0.0–25.0	<5.0
Tricyclic antidepressants	Negative	Negative
Urine		
Urine toxicologic panel		
Amphetamines	Negative	Negative
Barbiturates	Negative	Negative
Benzodiazepines	Negative	Negative
Cannabinoids	Negative	Negative
Cocaine metabolites	Negative	Negative
Opiates	Negative	Negative

* To convert the values for urea nitrogen to millimoles per liter, multiply by 0.357. To convert the values for creatinine to micromoles per liter, multiply by 88.4. To convert the values for glucose to millimoles per liter, multiply by 0.05551. To convert the values for ethanol to millimoles per liter, multiply by 0.2171. To convert the values for salicylates to millimoles per liter, multiply by 0.07240.

† Reference values are affected by many variables, including the patient population and the laboratory methods used. The ranges used at Massachusetts General Hospital are for adults who are not pregnant and do not have medical conditions that could affect the results. They may therefore not be appropriate for all patients.

Asking The Human Expert

Differential Diagnosis

Dr. Amy W. Baughman: This 49-year-old man presented with recurrent symptomatic hypoglycemia. He reported that he had gained weight recently, that he was eating five meals a day, and that he had intermittent morning dizziness that resolved with food. His medical history included Bell's palsy and hypoglycemia that had not been evaluated previously. His social history was notable for his job as a nurse in a medical facility and his family history of diabetes. Initial laboratory testing revealed a normal glycated hemoglobin level and a low glucose level (36 mg per deciliter).

In developing a differential diagnosis, the most specific feature of this patient's presentation is symptomatic hypoglycemia. He presented with Whipple's triad, a sign that was first described in the 1930s by Dr. Allen Whipple, who aimed to establish criteria for pancreatic surgery for insulinomas.¹ Whipple's triad includes symptoms of hypoglycemia, which often occur in a fasting state or after exercise; a low plasma glucose level; and resolution of the symptoms with the administration of glucose. Today, this sign is useful for identifying persons who should undergo a formal evaluation for hypoglycemia.

In constructing a differential diagnosis to determine the cause of hypoglycemia, there are three broad categories to consider: systemic illness, ingestion of drugs or toxins, and endogenous insulin production.

Systemic Illness

SYSTEMIC ILLNESS

Hypoglycemia is a common problem in hospitalized patients, both those who have diabetes mellitus and those who do not; it can be seen with several systemic disease processes.² Hypoglycemia can occur in patients with sepsis or a condition that causes a malnourished state, such as anorexia nervosa. It can also be seen in patients with liver failure, kidney failure, congestive heart failure, hormonal deficiency (e.g., adrenal insufficiency), or disorders of carbohydrate metabolism. Normally, the body has several regulatory mechanisms that prevent hypoglycemia, including hormonal and neural signaling pathways that ensure glucose availability from intake, hepatic and renal gluconeogenesis, and hepatic glycogenolysis. However, in the context of systemic diseases, some of the pathways may be dysfunctional or impaired to such an extent that the normal compensatory processes are overwhelmed and hypoglycemia occurs.

A much less common systemic illness that can cause hypoglycemia is cancer complicated by non-islet-cell tumor hypoglycemia. This paraneoplastic syndrome results in overproduction of insulin-like growth factor II, which stimulates the insulin receptor.³ Patients with this complication usually present with large, clinically obvious tumors,⁴ such as mesenchymal tumors, fibromas, adenocarcinomas, or hepatocellular carcinomas.³

In this case, these causes of hypoglycemia are unlikely because the patient was generally well and did not have evidence of a systemic illness, kidney or liver disease, or cancer. In addition, the fact that he had persistent hypoglycemia, despite having functional compensatory mechanisms such as hepatic gluconeogenesis, suggests an alternative mechanism, specifically medication or hyperinsulinism.

Ingestion of Drugs or Toxins

INGESTION OF DRUGS OR TOXINS

Hypoglycemia can be due to ingestion of drugs or toxins. Heavy alcohol use may result in hypoglycemia in persons who have poor nutritional status or impaired liver function due to hepatic glycogen depletion.^{5,6} This patient reported that he drank alcohol rarely, and he had an ethanol level of 0 mg per deciliter on admission; also, he did not have evidence of nutritional deficiencies or liver disease.

Aside from diabetes medications, several drugs have been associated with hypoglycemia, although in a systematic review of 164 drugs, the quality of evidence supporting the association was only low to moderate.⁷ Medications that are commonly implicated as causes of hypoglycemia include fluoroquinolones, quinine, beta-blockers, and angiotensin-converting-enzyme inhibitors. Hypoglycemia has also been reported after ingestion of herbal products that are contaminated with sulfonylureas and glyburide.^{8,9} This patient was taking vitamin B₁₂ and vitamin D supplements, but he did not report using any other medications or herbal supplements, and the chronic nature of his hypoglycemic symptoms suggests that medications are not the cause of his hypoglycemia.

Medications that are used to treat diabetes — insulin and insulin secretagogues, such as sulfonylureas and meglitinides — can cause hypoglycemia. Accidental hypoglycemia occurs when a patient unintentionally takes a diabetes medication, or someone unintentionally administers a diabetes medication to the patient, because of a medication mix-up or contamination. In contrast, factitious hypoglycemia occurs when a patient intentionally or surreptitiously takes a diabetes medication to induce low blood sugar. A person with an episode of factitious hypoglycemia may have diabetes, may be in close contact with someone who has diabetes, or may be a medical professional. The person may also have an underlying psychiatric disorder, such as major depression, or have a history of suicidality¹⁰; in one case report, 2 out of 10 patients with an episode of factitious hypoglycemia went on to commit suicide.¹¹ Finally, malicious hypoglycemia occurs when someone intentionally administers a diabetes medication to the patient to induce low blood sugar, which can be seen in cases of Munchausen's syndrome by proxy.¹² Accidental, factitious, and malicious hypoglycemia often occur at random times, with no relation to a fasting state or meals.

Of note, this patient probably had access to diabetes medications because he had family members with diabetes and was a nurse, but he did not have a history of mental illness or depression. In addition, his episodes of hypoglycemia were not random; they were induced by a fasting state.

The patient's age, presentation, clinical history, and duration of symptoms are most consistent with a diagnosis of **insulinoma**. To establish this diagnosis, I would initiate a **supervised fast** to monitor for symptomatic hypoglycemia. In addition, I would measure serum levels of glucose, insulin, C-peptide, proinsulin, and β -hydroxybutyrate.

Dr. Amy W. Baughman's Diagnosis

Endogenous Insulin Production

ENDOGENOUS HYPERINSULINISM

Causes of endogenous insulin production include noninsulinoma pancreatogenous hypoglycemia syndrome (NIPHS), insulin autoimmune hypoglycemia, and insulinomas. NIPHS is characterized by the presence of islet cells with abnormal morphologic features, including hypertrophy and nesidioblastosis, in the absence of an islet-cell tumor.¹³ NIPHS is less common than insulinomas, and it is associated with hypoglycemia that occurs 2 to 4 hours postprandially, whereas hypoglycemia occurred in a fasting state in this patient.¹³

Insulin autoimmune hypoglycemia is caused by antibodies that target insulin or the insulin receptor. One form of insulin autoimmune hypoglycemia is Hirata's disease (insulin autoimmune syndrome), which occurs when autoantibodies against endogenous insulin develop. Patients with Hirata's disease can present with hypoglycemic episodes that range in severity, although episodes are usually mild and postprandial.¹⁴ The syndrome is often triggered by exposure to medications such as thiol compounds¹⁵ or by viruses,¹⁶ and it can be associated with autoimmune diseases or hematologic disorders.¹⁷ Hirata's disease was first described in Japan and is the third most common cause of hypoglycemia there.¹⁵ However, the disease is rare globally, with only 380 cases reported worldwide from 1970 to 2009.¹⁹

An even more rare form of insulin autoimmune hypoglycemia is type B insulin resistance syndrome, which occurs when autoantibodies against the insulin receptor develop. Only 67 cases of type B insulin resistance syndrome have been reported worldwide as of 2014.²⁰ Patients with type B insulin resistance syndrome most often present with severe diabetes and extreme insulin resistance, but they can also present with hypoglycemia.¹⁸ At low concentrations, anti-insulin receptor antibodies can cause hypoglycemia, with an effect similar to that of insulin; at higher concentrations, these antibodies can cause insulin resistance and hyperglycemia.^{20,21} Type B insulin resistance syndrome is also strongly associated with autoimmune diseases. This patient did not have diabetes mellitus or evidence of other autoimmune or hematologic disorders, so both Hirata's disease and type B insulin resistance syndrome are unlikely.

Insulinomas are insulin-producing tumors that arise from the beta cells of the pancreas. Up to 6% of insulinomas are associated with multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disorder characterized by the presence of two or more tumors of the parathyroid gland, pituitary gland, or pancreatic islet cells.²² Nearly all patients with insulinomas present with hypoglycemic symptoms, which can be progressive and are often provoked by a fasting state; these symptoms rarely occur in a postprandial state.²³ One case report showed that 77% of patients had autonomic symptoms and 96% had neuroglycopenic symptoms.²³ This patient reported a history of intermittent morning dizziness that resolved with food; on the morning of his current presentation with hypoglycemia, he was found obtunded on the floor at work, having last eaten 7 hours before presentation. In addition, weight gain is seen in 18 to 56% of patients with insulinomas,^{23,24} and this patient reported recent unintentional weight gain, which was potentially due to a tendency to eat frequent meals to avoid symptoms of hypoglycemia.

In a case series that included 237 patients with insulinomas, 43% of the patients were men, the median age at presentation was 50 years, and the median duration of symptoms before diagnosis was 1.5 years.²² This patient was a 49-year-old man in whom hypoglycemia had been identified during routine laboratory evaluation 2 years earlier and symptoms of hypoglycemia had been occurring for at least 3 years.

The patient's age, presentation, clinical history, and duration of symptoms are most consistent with a diagnosis of insulinoma. To establish this diagnosis, I would initiate a supervised fast to monitor for symptomatic hypoglycemia. In addition, I would measure serum levels of glucose, insulin, C-peptide, proinsulin, and β -hydroxybutyrate.

Insulinoma.

Diagnostic Testing

Dr. Nancy J. Wei: A supervised fast was performed to monitor for spontaneous symptomatic hypoglycemic episodes. During the fast, the patient consumed only water. Every 2 hours, a point-of-care fingerstick glucose measurement was obtained, and a clinical assessment for subjective symptoms of hypoglycemia and for objective evidence of altered mental status was performed.²⁵ At 4 hours, the fingerstick glucose measurement was 53 mg per deciliter (2.9 mmol per liter), and there were no symptoms of hypoglycemia or signs of altered mental status. Blood samples were obtained to measure serum levels of glucose (in a tube containing glycolytic agent), insulin, C-peptide, proinsulin, and β -hydroxybutyrate. The supervised fast was continued, with a plan to obtain another fingerstick glucose measurement in 30 minutes.

At 4.5 hours, the fingerstick glucose measurement was 45 mg per deciliter (2.5 mmol per liter), and there were no symptoms of hypoglycemia or signs of altered mental status. Blood samples were obtained to measure serum levels of glucose, insulin, C-peptide, proinsulin, and β -hydroxybutyrate, and a screen for oral hypoglycemic agents was performed. The supervised fast was concluded, and dextrose was administered. The results of the fasting study showed endogenous hyperinsulinism that was consistent with insulinoma (Table 2). Localization studies, including computed tomography (CT) and endoscopic ultrasonography, were performed.

Table 2. Clinical and Laboratory Results of a Supervised Fasting Study (up to 72 Hr), According to the Cause of Hypoglycemia, and Results in This Patient.*

Variable	Normal Value, Fasting	Use of Exogenous Insulin	Use of Oral Hypoglycemic Drug	Insulinoma	This Patient's Result, 4.5 Hr of Fasting
Symptoms	Absent	Present	Present	Present	Present [†]
Glucose (mg/dl)	<55	<55	<55	<50	45
Insulin (μ IU/ml)	<3	>3	\geq 3	\geq 3 (specificity, 100%)	14.1
C-peptide (ng/ml)	<0.2	<0.2	\geq 0.2	\geq 0.6 (specificity, 78%)	4.1
Proinsulin (pmol/liter)	<5	<5	\geq 5	\geq 5 (specificity, 78%)	112
β -Hydroxybutyrate (mmol/liter)	>2.7	\leq 2.7	\leq 2.7	\leq 2.7 (specificity, 100%)	0.2
Screen for oral hypoglycemic agents	Negative	Negative	Positive	Negative	Negative
Increase in glucose after administration of glucagon (mg/dl)	<25	\geq 25	\geq 25	\geq 25 (specificity, 100%)	NA

* Data are from Cryer et al.²⁵ and Placzkowski et al.²² To convert the values for glucose to millimoles per liter, multiply by 0.05551. NA denotes not assessed.

† Symptoms were not present at 4.5 hours of supervised fasting, but they were present on admission, when the patient was in a fasting state.

Imaging Studies

Dr. Peter F. Hahn: Because the hypoglycemia was suggestive of a pancreatic neuroendocrine tumor, multidetector-row helical CT of the abdomen was performed in two phases of contrast enhancement. Images obtained during the late arterial phase showed a 7-mm focus of enhancement in the pancreatic head, immediately adjacent to a gas bubble in a periamppullary duodenal diverticulum (Figure 1A). This finding was not visible on images obtained during the standard portal venous phase, approximately 25 seconds later (Figure 1B).

Contrast-enhanced arterial-phase images may be the only opportunity to detect functional neuroendocrine tumors, which are usually small and enhance transiently. The reported success of CT for localization of these

Endoscopic Studies

Dr. Brenna W. Casey: After the lesion was localized on abdominal imaging, endoscopic ultrasonography was performed with the use of a linear array echoendoscope. Endoscopic ultrasonography successfully identifies up to 92% of pancreatic neuroendocrine tumors that are as small as 3 to 5 mm in diameter. In this case, endoscopic ultrasonography revealed a hypoechoic mass in the pancreatic head (Figure 2). The mass measured 11 mm by 10 mm in maximal cross-sectional diameter. The endosonographic borders were well defined. After confirming the absence of intervening vascular structures on color Doppler imaging, we performed a fine-needle biopsy to obtain a visible core of tissue. Rapid cytologic examination of the specimen revealed malignant cells that were suggestive of a neuroendocrine tumor. On the basis of these findings, the patient was referred for surgical resection and underwent successful enucleation of the head of the pancreas 15 days after the initial presentation.

Figure 1.

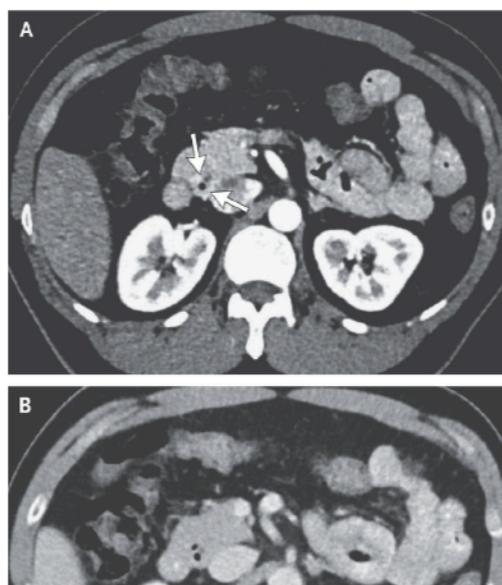
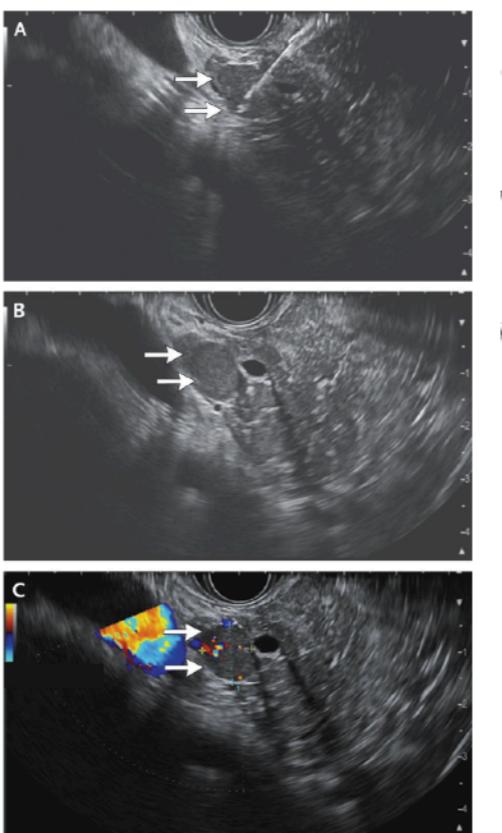
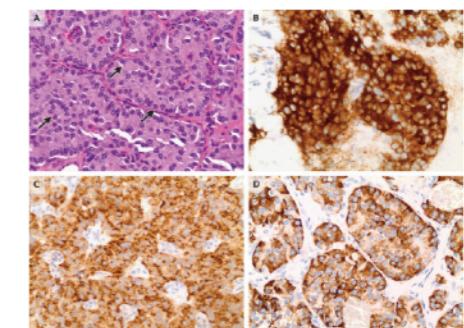



Figure 2.

Endoscopic Ultrasound Images.

Pathological Discussion


Dr. M. Lisa Zhang: The pancreatic head enucleation specimen was sectioned to reveal homogeneous, soft, tan cut surfaces. On histologic examination, the tumor showed nests and rosettes of cells with round uniform nuclei, coarse "salt and pepper" chromatin, and abundant granular pink cytoplasm (Figure 3A). The architectural and cytologic features were characteristic of a well-differentiated neuroendocrine tumor. On immunohistochemical staining, the tumor cells were positive for neuroendocrine markers synaptophysin and chromogranin and the hormone marker insulin (Figure 3B, 3C, and 3D). These findings confirmed the diagnosis of insulinoma.

Neuroendocrine tumors represent 2 to 5% of all pancreatic neoplasms, and most are sporadic and nonfunctional.²⁹ They can be associated with syndromes — most notably MEN1 and von Hippel-Lindau disease — and are more likely to be multifocal when they occur in the context of these syndromes. Characterization of a functional neuroendocrine tumor cannot be based solely on the immunohistochemical expression of hormone products, given that most nonfunctional tumors produce small subclinical amounts of hormone peptides; it is based primarily on the hormone-related clinical syndrome.²⁹

Insulinoma is the most common type of functional pancreatic neuroendocrine tumor, accounting for 4 to 20% of resected cases. There are no known causal factors for the development of sporadic solitary insulinomas, although 4 to 5% of these insulinomas are associated with MEN1.³⁰ Insulinomas are located almost exclusively in the pancreas and are more indolent than other functional tumors; metastases occur in less than 10% of cases and are usually associated with tumors that measure 2 cm or more in diameter.

The most important prognostic factors for pancreatic neuroendocrine tumors are stage and grade. In this case, the tumor measured 12 mm in diameter. There was no evidence of lymphovascular invasion, perineural invasion, or lymph-node metastases, although the tumor abutted the resection margin, which is often the case in enucleation procedures. On the basis of the tumor size (<2 cm), the intraparenchymal location, and the absence of positive lymph nodes, the pathological stage was determined to be pT1N0, in accordance with the American Joint Committee on Cancer tumor-node-metastasis staging system.

Figure 3.

Pancreatic Head Enucleation Specimen.

Follow-up

Dr. Wei: Transient hyperglycemia is common after insulinoma resection, so point-of-care fingerstick glucose measurements were obtained every 6 hours for the first day after surgery. The patient's blood glucose level remained between 93 and 156 mg per deciliter (5.2 and 8.7 mmol per liter), without the need for supplemental insulin. Since up to 6% of patients with insulinomas have MEN1, screening for

FINAL DIAGNOSIS

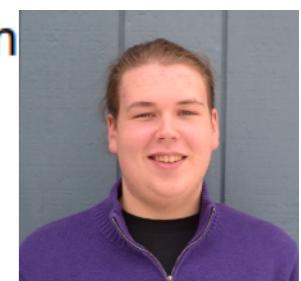
Well-differentiated pancreatic insulin-secreting neuroendocrine tumor (insulinoma).

glycated hemoglobin level in the prediabetic range (5.8%), lifestyle changes for the treatment of prediabetes and annual glycated hemoglobin checks were recommended.

Final Diagnosis

Well-differentiated pancreatic insulin-secreting neuroendocrine tumor (insulinoma).

**But the final diagnosis is only part
of the story...**


**...many clinical reasoning skills
missed if we only look at the
accuracy of an AI system on final
diagnosis.**

Advancing Medical Artificial Intelligence Using a Century of Cases

Thomas A. Buckley¹, Riccardo Conci¹, Peter G. Brodeur², Jason Gusdorf², Sourik Beltrán², Bita Behrouzi², Byron Crowe², Jacob Dockterman³, Muzzammil Muhammad², Sarah Ohnigian², Andrew Sanchez², James A. Diao^{1,4}, Aashna P. Shah¹, Daniel Restrepo⁵, Eric S. Rosenberg⁶, Andrew S. Lea⁷, Marinka Zitnik^{1,8}, Scott H. Podolsky^{9,10}, Zahir Kanjee², Raja-Elie E. Abdulnour¹¹, Jacob M. Koshy², Adam Rodman², and Arjun K. Manrai^{1*}

1. Department of Biomedical Informatics, Harvard Medical School, Boston, MA
2. Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
3. Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA
4. Department of Medicine, Brigham and Women's Hospital, Boston, MA
5. Department of Medicine, Massachusetts General Hospital, Boston, MA
6. Department of Pathology, Massachusetts General Hospital, Boston, MA
7. Department of Health Humanities and Bioethics, University of Rochester School of Medicine and Dentistry, Rochester, NY
8. Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA
9. Center for the History of Medicine, Countway Library of Medicine, Harvard Medical School, Boston, MA
10. Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA
11. Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston MA

* Correspondence: Arjun_Manrai@hms.harvard.edu

Thomas Buckley

CPC-Bench

A Community Benchmark for Clinical AI

Benchmark Tasks

ⓘ Click on any task box below for detailed information and examples.

Text-based Challenges

Differential Diagnosis (DDx)

Generate ranked list of potential diagnoses given clinical presentation.

Testing Plan

Recommend appropriate diagnostic tests and procedures.

Literature Search

Search for literature to support a medical claim.

Diagnostic Touchpoints

ⓘ Physician Annotations

Diagnosis during key moments of clinical course.

Question Answering (QA)

Clinical concept understanding and factual knowledge.

Clinical Reasoning

ⓘ Physician Annotations

Identify the confirmatory and disconfirmatory evidence for each diagnosis.

Information Omission

ⓘ Physician Annotations

Provide a differential diagnosis using only background information and initial presentation.

Multimodal Challenges

NEJM Image Challenge

Multiple-choice questions from NEJM Image Challenge.

Visual Question Answering (VQA)

Multiple-choice medical imaging questions constructed from the figures and captions in CPCs.

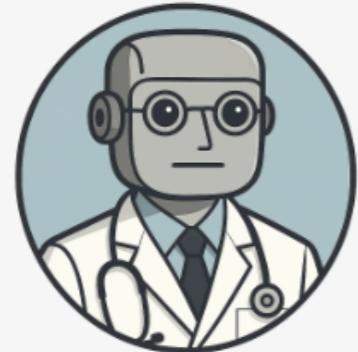
Visual Differential Diagnosis

Provide a differential diagnosis provided only the figures and tables from the initial presentation.

Thomas Buckley

CPC-Bench

A Community Benchmark for Clinical AI

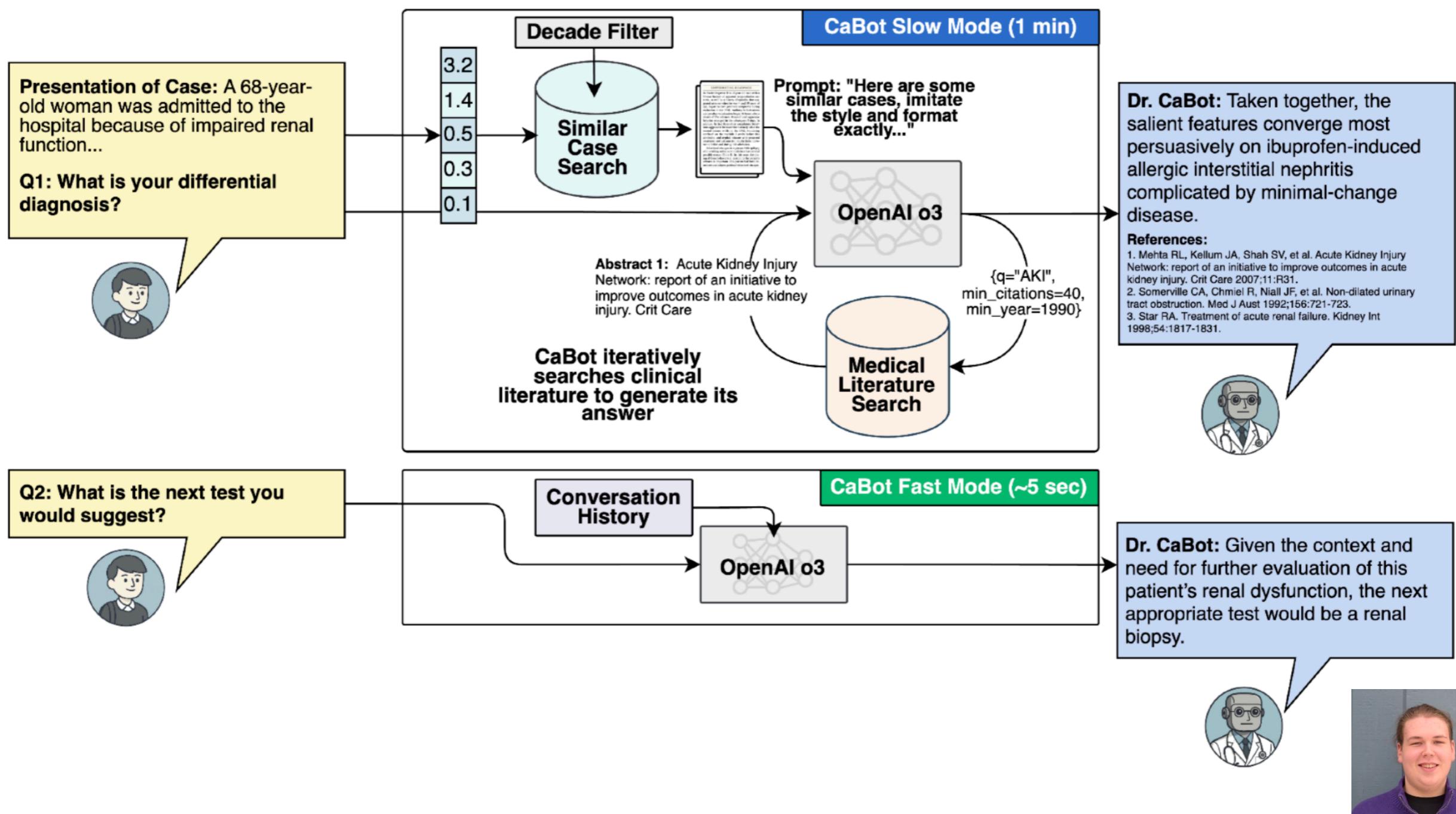

Leaderboard

Model Performance

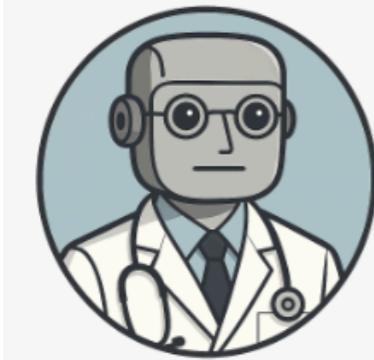
Updated: 9/26/2025

Could we create an AI discussant?

🤖 Dr. CaBot: The AI Expert Discussant


Dr. CaBot is an AI that provides comprehensive differential diagnoses in the style of an expert discussant. Dr. CaBot can search the clinical literature to produce an evidence-based response.

💡 Clinical Literature Retrieval:


Dr. CaBot searches through 1.6M+ clinical abstracts from leading clinical journals to generate its response.

🚩 Style Adaptation:

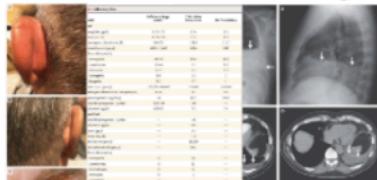
The model is provided the two most similar case presentations from the chosen era. These help the model simulate the style of an expert discussant.

Dr. CaBot: The AI Expert Discussant

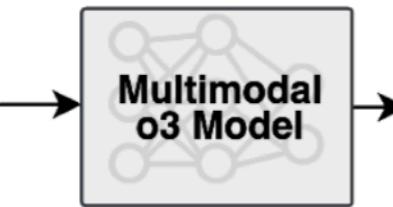
Dr. CaBot is an AI that provides comprehensive differential diagnoses in the style of an expert discussant. Dr. CaBot can search the clinical literature to produce an evidence-based response.

C Clinical Literature Retrieval:

Dr. CaBot searches through 1.6M+ clinical abstracts from leading clinical journals to generate its response.


Style Adaptation:

The model is provided the two most similar case presentations from the chosen era. These help the model simulate the style of an expert discussant.


C. Dr. CaBot Presents a Video Case Conference

Presentation of Case
A 70-year-old man was evaluated in the rheumatology clinic of this hospital because of a recurrent left pleural effusion.

Case Presentation Images

CaBot DDx
Dr. CaBot: This 70-year-old man presented with a recurrent left pleural effusion...

LaTeX Beamer Code

```
\begin{frame}{Case Presentation}
\begin{itemize}
\item 70-year-old man with recurrent left pleural effusion
\item Presents with sudden onset left-sided back pain
\item History of polymyalgia rheumatica and relapsing polychondritis
\end{itemize}
\end{frame}

\begin{frame}{Rheumatologic History}
\begin{itemize}
\item 5 years ago: shoulder/proximal muscle pain; ESR 150 CRP elevated; prednisone
\end{itemize}

```

Per-slide Narration

[Slide 1] "Good morning, everyone. I'm Dr. CaBot, and today I'll be presenting a case of a 70-year-old man with a recurrent left pleural effusion in our Clinical Pathologic Conference. Um, let's dive in."

LaTeX Compiler

FFMPEG

TTS Model

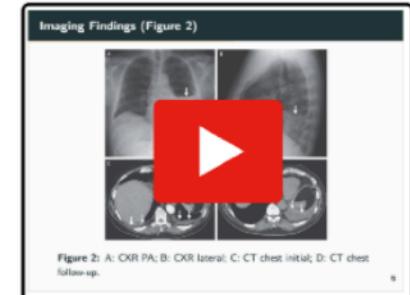
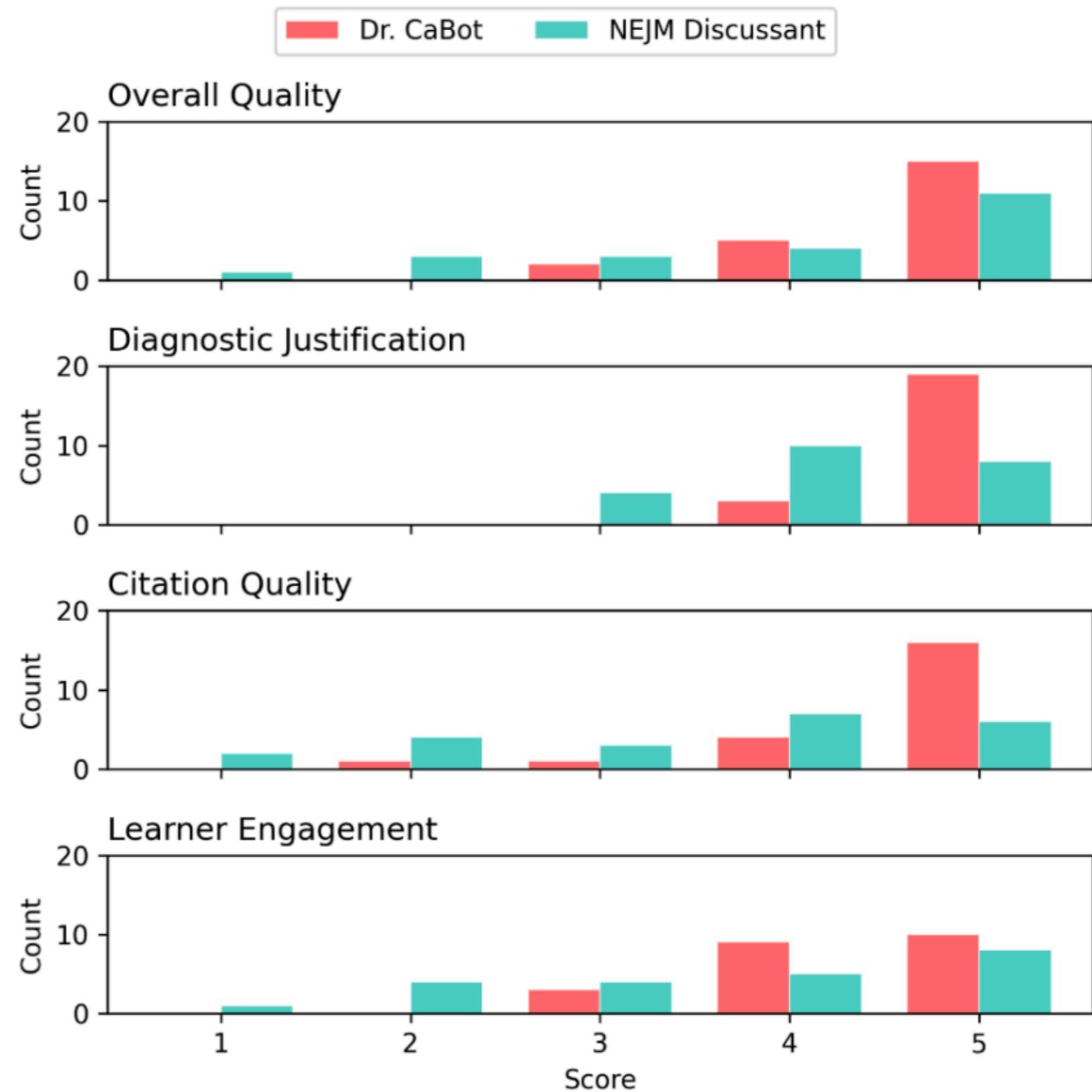


Figure 2: A: CXR PA; B: CXR lateral; C: CT chest initial; D: CT chest follow-up.

Complete Video Case Presentation with Voice Over (5-10 mins)

Modern Case (August 15, 2018 #25-2018)


A 63-year-old man was evaluated at this hospital because of syncope. Approximately 13 years before admission, the patient had an out-of-hospital cardiac arrest and was found to have multivessel coronary artery disease. He underwent coronary-artery bypass grafting (CABG) at another hospital, with grafting of the left internal mammary artery to the left anterior descending coronary artery, grafting of a segment of a radial artery to an obtuse marginal branch of the left circumflex coronary artery, and grafting of a saphenous vein to the posterior descending artery.

Dr. CaBot: In this patient, the combination of late presentation after SVG placement, the precise anatomic location within the right AV groove, the heterogeneous echotexture with an echo-bright rim, and the compressive effects on tricuspid inflow strongly favor the diagnosis of saphenous vein graft aneurysms as the etiology of his right AV-groove masses.

**CaBot
(modern)**

In 62 blinded comparisons of CaBot vs human expert-generated text, **physicians misclassified the source in 46 of 72 (74%) of trials**

How would CaBot have done on this case?

CASE RECORDS of the MASSACHUSETTS GENERAL HOSPITAL

Founded by Richard C. Cabot
Eric S. Rosenberg, M.D., *Editor*
David M. Dudzinski, M.D., Meridale V. Baggett, M.D., Kathy M. Tran, M.D.
Dennis C. Sgroi, M.D., Jo-Anne O. Shepard, M.D., *Associate Editors*
Emily K. McDonald, Tara Corpuz, *Production Editors*

Case 23-2022: A 49-Year-Old Man

Two years earlier, the patient had had an episode of drooping and decreased sensation of the left side of the face and difficulty enunciating words, which occurred while he was at work. He presented to the emergency department of this hospital. The blood glucose level was 64 mg per deciliter (3.6 mmol per liter), and testing for Lyme disease was negative. He received a diagnosis of Bell's palsy and was treated with prednisone and acyclovir; the symptoms resolved. Two months later, the patient established care in the primary care clinic of this hospital. Routine

Table 1. Laboratory Data.

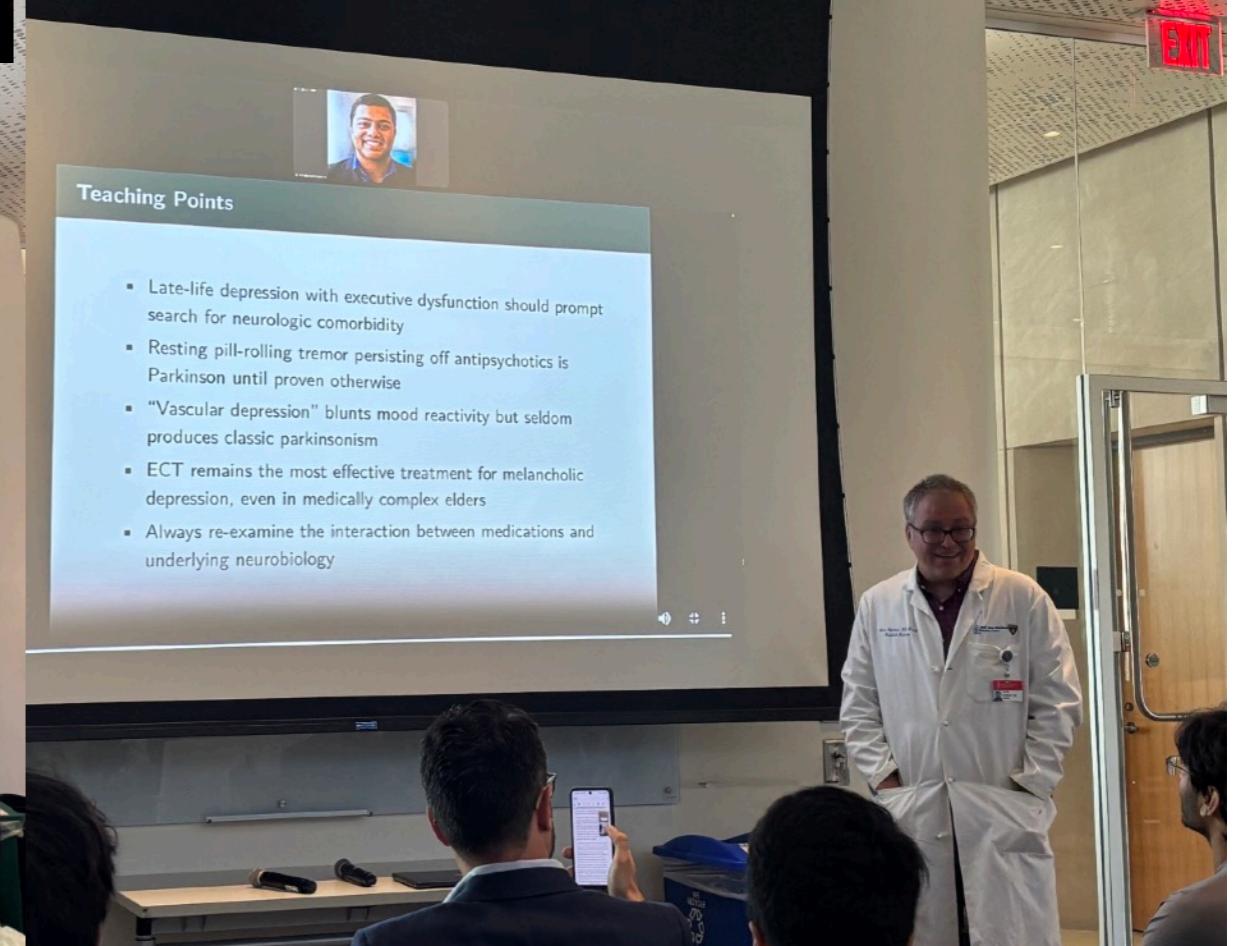
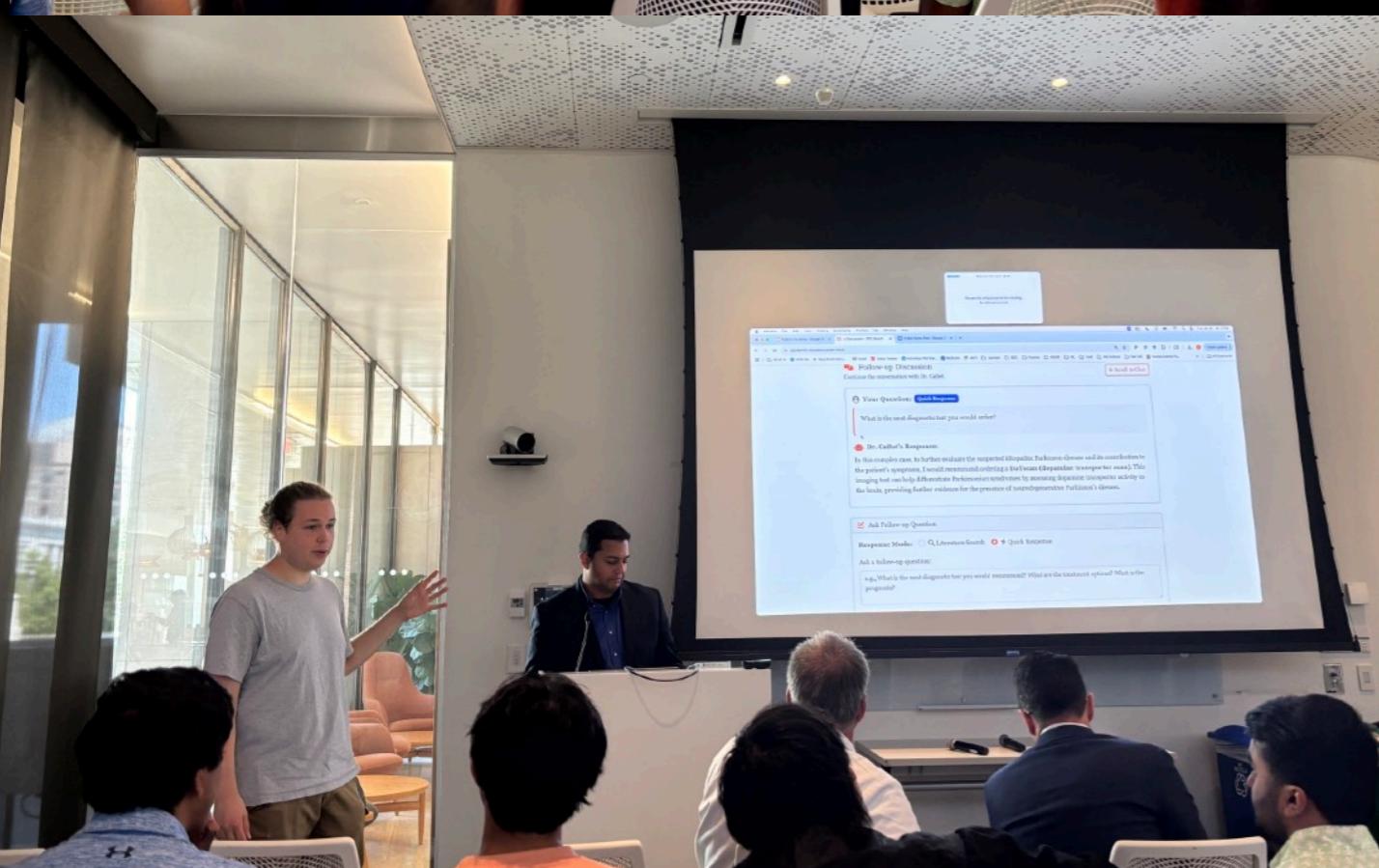
Variable	Reference Range, Adults†	On Admission
Blood		
Alanine aminotransferase (U/liter)	5–34	33
Aspartate aminotransferase (U/liter)	6–55	28
Alkaline phosphatase (U/liter)	45–115	105
Lipase (U/liter)	13–60	67
Albumin (g/dl)	3.3–5.0	4.4
Sodium (mmol/liter)	135–145	138
		3.8
		103
		24
		12
		1.03
		36
Amphetamines	Negative	0.0
Barbiturates	Negative	<0.3
Benzodiazepines	Negative	<5.0
Cannabinoids	Negative	Negative
Cocaine metabolites	Negative	Negative
Opiates	Negative	Negative

* To convert the values for urea nitrogen to millimoles per liter, multiply by 0.357. To convert the values for creatinine to micromoles per liter, multiply by 88.4. To convert the values for glucose to millimoles per liter, multiply by 0.05551. To convert the values for ethanol to millimoles per liter, multiply by 0.2171. To convert the values for salicylates to millimoles per liter, multiply by 0.07240.

† Reference values are affected by many variables, including the patient population and the laboratory methods used. The ranges used at Massachusetts General Hospital are for adults who are not pregnant and do not have medical conditions that could affect the results. They may therefore not be appropriate for all patients.

Two hours before this admission, the patient was found by colleagues on the floor of a conference room. His eyes were open, but he was obtunded and making nonpurposeful movements. Emergency medical services were called. On evaluation, a fingerstick glucose measurement was 39 mg per deciliter (2.2 mmol per liter; reference range, 70 to 109 mg per deciliter [3.9 to 6.1 mmol per liter]). Intravenous dextrose was administered, and the patient was brought to the emergency department of this hospital for further evaluation.

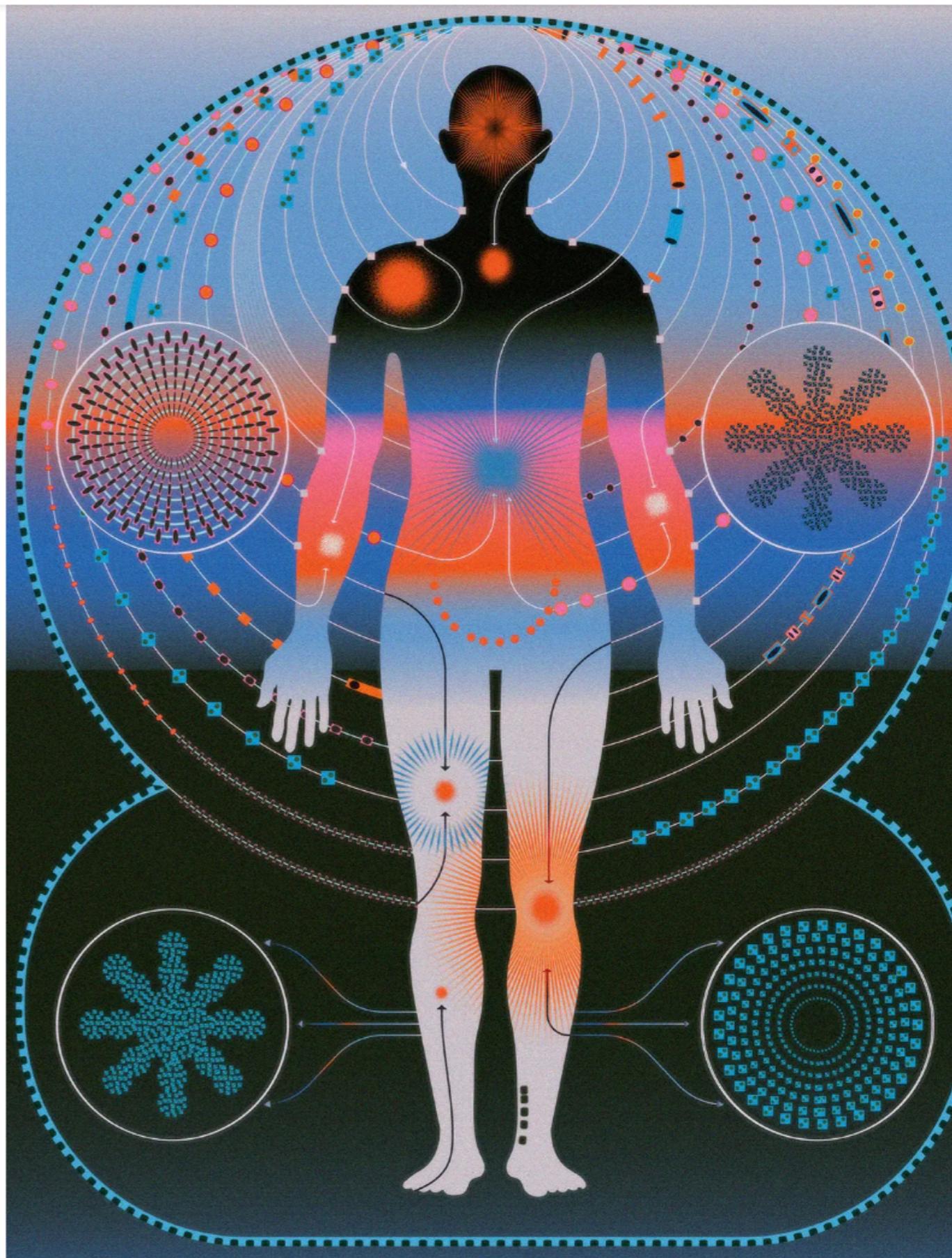
On arrival at the emergency department, the patient was obtunded and did not react to sternal rub. Additional intravenous dextrose was administered, and a dextrose infusion was started. The patient's mental status improved, and he was able to provide additional history. That morning, he had felt that he was in a "dream-like" state; there were no other symptoms. The altered mental status had resolved, but he could not recall most events of the morning, including the meeting that had taken place 3 hours before admission.



Review of symptoms was notable for unintentional weight gain of one pant size during the past 3 months, as well as intermittent morning dizziness during the past 3 years, which would resolve after the patient ate candy or breakfast. He reported no recent illness, depression, anxiety, change in activity or exercise, or change in intake of food or drink. On a typical day, he had breakfast at 5 a.m., a second breakfast at 10 a.m., lunch at 1 p.m., dinner at 6 p.m., and a snack at 8 p.m. The patient had last eaten approximately 7 hours before presentation to the emergency department.

weight in kilograms divided by the square of the height in meters) was 27.6. The patient appeared well. He had no hepatosplenomegaly or skin hyperpigmentation, and the remainder of the physical examination was normal.

On arrival at the emergency department, the blood glucose level was 36 mg per deciliter (2.0 mmol per liter); after the administration of dextrose, a fingerstick glucose measurement was 158 mg per deciliter (8.8 mmol per liter). The complete blood count and blood electrolyte levels were normal, as were the results of liver-function and kidney-function tests. The glycated hemoglobin level was 5.4% (reference range, 4.3 to 6.4). Serum and urine toxicologic panels were negative. Laboratory test results are shown in Table 1. The patient was admitted to this hospital.

A diagnostic test was performed.


BRAVE NEW WORLD DEPT.

IF A.I. CAN DIAGNOSE PATIENTS, WHAT ARE DOCTORS FOR?

Large language models are transforming medicine—but the technology comes with side effects.

By Dhruv Khullar

September 22, 2025

The NEW ENGLAND JOURNAL of MEDICINE

CASE RECORDS of the MASSACHUSETTS GENERAL HOSPITAL

Case 28-2025: A 36-Year-Old Man with Abdominal Pain, Fever, and Hypoxemia

Gurpreet Dhaliwal, M.D.,^{1,2} C. Michael Hood, M.D.,^{3,4} Arjun K. Manrai, Ph.D.,⁵
Thomas A. Buckley, B.S.,⁵ Akwi W. Asombang, M.D., M.P.H.,^{6,7}
and Elizabeth L. Hohmann, M.D.^{6,7}

CASE RECORDS EDITOR'S NOTE

Dr. Eric S. Rosenberg: In the following case, we provided the case presentation to both Dr. Gurpreet Dhaliwal, master clinician and expert in clinical reasoning, and “Dr. CaBot,” an artificial intelligence (AI) system created, in part, with the use of all the published Case Records of the Massachusetts General Hospital. Both Dr. Dhaliwal and Dr. CaBot — designated throughout the case as Dr. CaBot (AI) — were given

DIFFERENTIAL DIAGNOSIS

Dr. Gurpreet Dhaliwal: This 36-year-old man had self-limited abdominal and back pain. Two weeks later, sepsis developed with gastrointestinal, pulmonary, hematologic, hepatic, lymphatic, and retroperitoneal abnormalities.

When considering the most likely cause of this patient's presentation, I could not identify a convincing diagnosis for the findings without selectively disregarding one or more major abnormalities — an approach that was neither logical nor defensible. I therefore adopted a strategy more suited to complex cases: constructing a causal pathway. This method organizes clinical findings in a temporal sequence of pathophysiological re-

INTRODUCTION TO DR. CABOT (AI)

Dr. Arjun (Raj) K. Manrai and Mr. Thomas A. Buckley: The Dr. CaBot AI system¹⁶ was created to generate differential diagnoses in the style of an expert discussant from the Case Records of the Massachusetts General Hospital. The system produces both a written differential diagnosis and a video of a slide-based presentation, using only the information provided in the initial case presentation. It searches millions of articles from the clinical literature and more than 6000 Case Records and then creates a differential diagnosis with the use of a large language model in the

style of similar cases, supported by relevant references. The Dr. CaBot AI system can interpret both text and images, and it can emulate the style of an expert discussant from any decade. Currently, the system takes approximately 5 minutes to render a written differential diagnosis and accompanying video (see the slide-based presentation from the AI system in Video 1; Dr. Dhaliwal's presentation of the differential diagnosis is shown in Video 2). The written differential diagnosis generated by the Dr. CaBot AI system is shown in italics, below, in its original, unedited form.

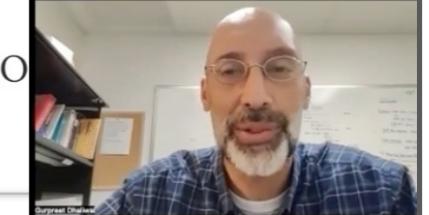
“Dr. CaBot” is named in homage to Dr. Richard C. Cabot, founder and first editor of the Case Records of the Massachusetts General Hospital, which have been published continuously by the *Journal* for the past century.¹⁷

DIFFERENTIAL DIAGNOSIS FROM DR. CABOT (AI)

Dr. CaBot (AI): The clinical narrative begins with a previously healthy 36-year-old man whose illness evolved from vague right-sided abdominal and back pain to overt sepsis, hypoxemia, thrombocytopenia, and cholestatic jaundice. Cross-sectional imaging revealed multifocal parenchymal lung opacities, hepatomegaly with periportal edema, biliary wall thickening, circumferential edema of the proximal duodenum, soft-tissue inflammation bridging the duodenum and right renal hilum, and a non-occlusive thrombus propagating from the superior right renal vein into the inferior vena cava (IVC). Blood cultures quickly grew *Streptococcus anginosus* in three of four bottles,

A 36-Year-Old Man with Fever, Hypoxemia, Thrombocytopenia, and Abdominal Pain

Clinical Case Conference


Dr. CaBot
Harvard Medical School
July 28, 2025

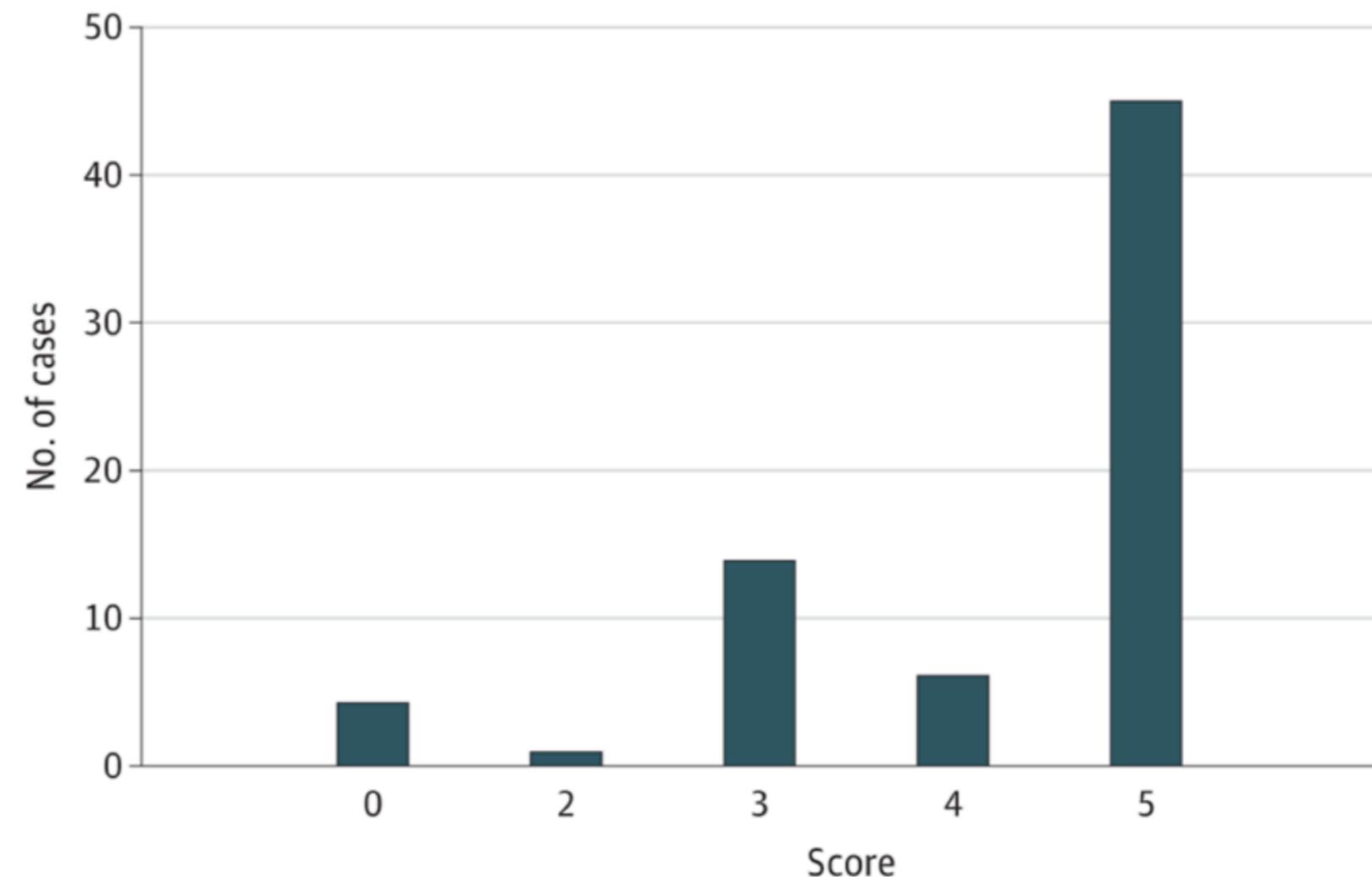
1

CASE RECORDS of the
MASSACHUSETTS GENERAL HO

Differential Diagnosis

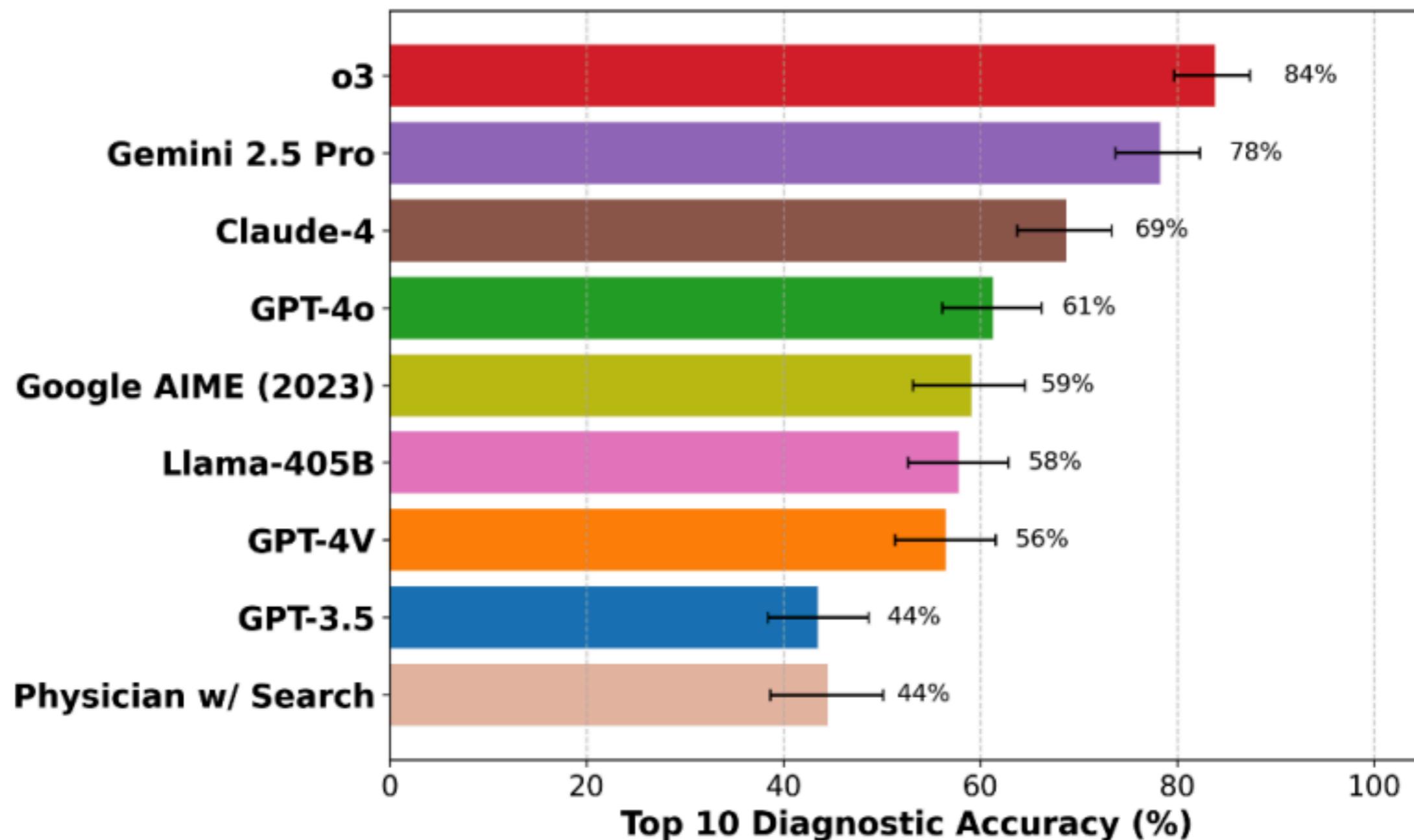
Gurpreet Daliwal, M.D.
Medicine
University of California San Francisco

Video from Dr. CaBot

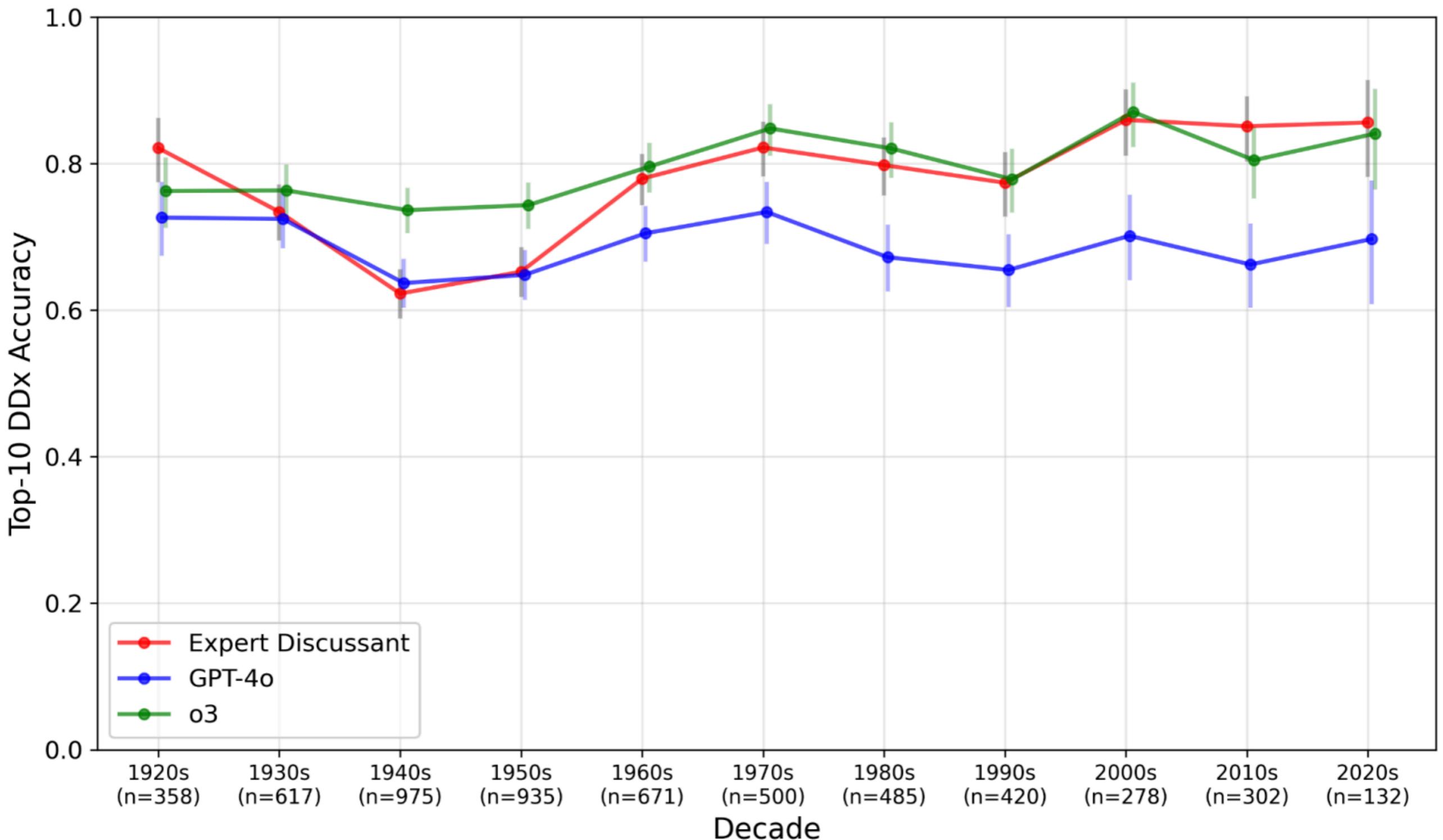

Video from Dr. Gurpreet Daliwal

so this is one (or two) cases....

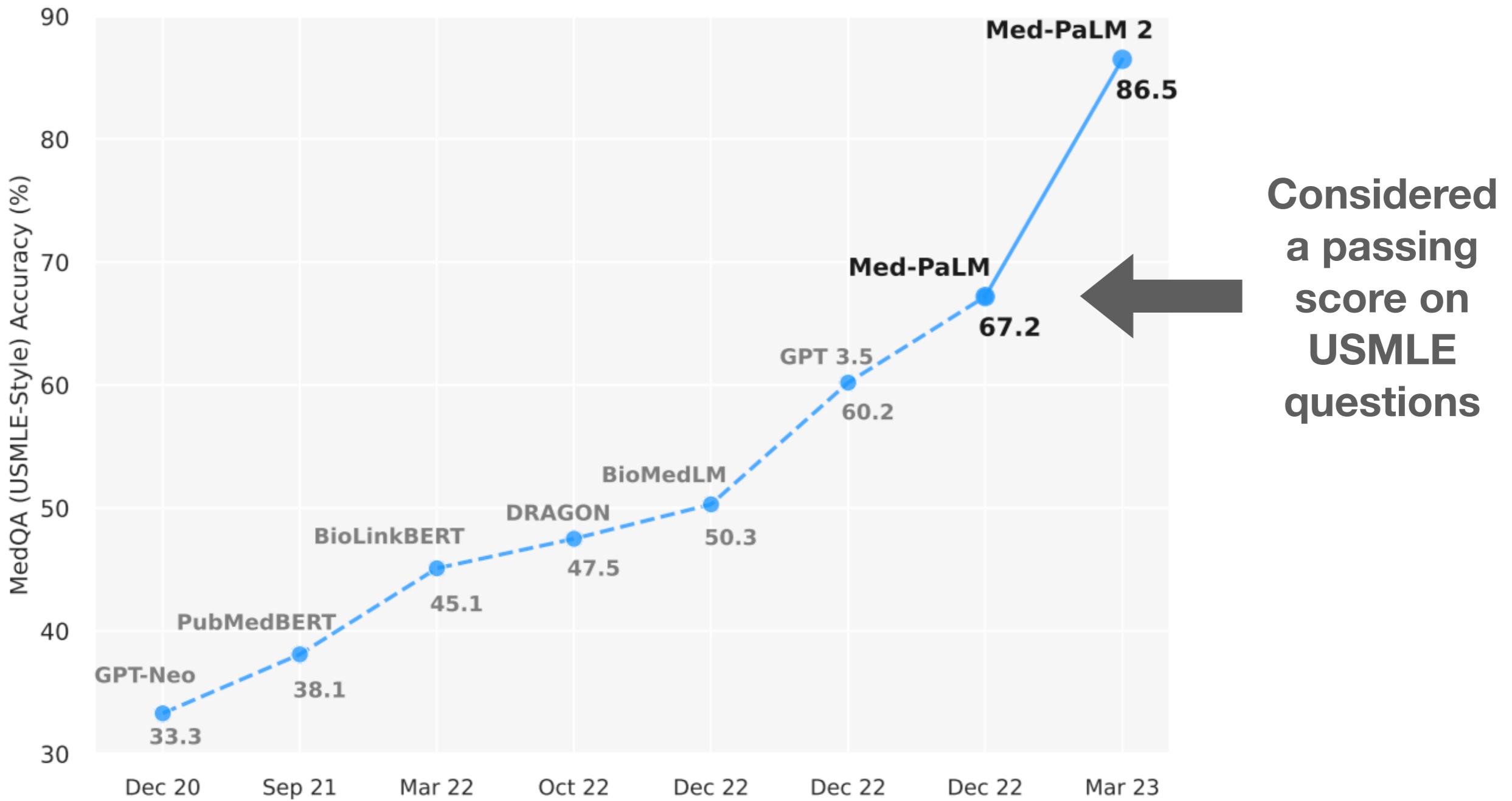
Accuracy of a Generative Artificial Intelligence Model in a Complex Diagnostic Challenge


Zahir Kanjee, MD, MPH¹; Byron Crowe, MD¹; Adam Rodman, MD, MPH¹

**GPT-4
performance
on 70 cases**



Histogram of GPT-4's performance. Performance scale scores (Bond et al²): 5=the actual diagnosis was suggested in the differential; 4=the suggestions included something very close, but not exact; 3=the suggestions included something closely related that might have been helpful; 2=the suggestions included something related, but unlikely to be helpful; 0=no suggestions close to the target diagnosis. (The scale does not contain a score of 1.)


B. Performance of LLMs on all 377 NEJM CPCs Published after 2015

B. Benchmarking LLMs on All *NEJM* CPCs

AI tested on USMLE questions

The power of words...

Google DeepMind

LARGE LANGUAGE MODELS AS OPTIMIZERS

Chengrun Yang* Xuezhi Wang Yifeng Lu Hanxiao Liu
Quoc V. Le Denny Zhou Xinyun Chen*
Google DeepMind * Equal contribution

ABSTRACT

Optimization is ubiquitous. While derivative-based algorithms have been powerful tools for various problems, the absence of gradient imposes challenges on many real-world applications. In this work, we propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as optimizers, where the optimization task is described in natural language. In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values, then the new solutions are evaluated and added to the prompt for the next optimization step. We first showcase OPRO on linear regression and traveling salesman problems, then move on to prompt optimization where the goal is to find instructions that maximize the task accuracy. With a variety of LLMs, we demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks. Code at <https://github.com/google-deepmind/opro>.

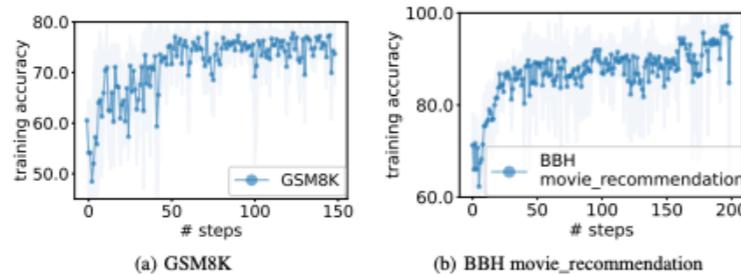
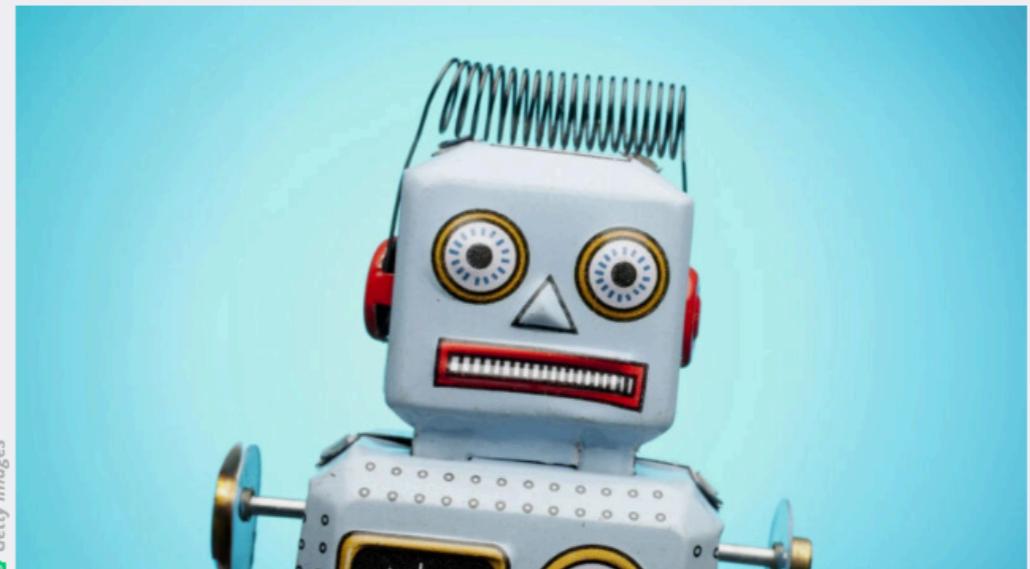


Figure 1: Prompt optimization on GSM8K (Cobbe et al., 2021) and BBH (Suzgun et al., 2022) movie_recommendation. The optimization on GSM8K has pre-trained PaLM 2-L as the scorer and the instruction-tuned PaLM 2-L (denoted PaLM 2-L-IT) as the optimizer; the optimization on BBH movie_recommendation has text-bison as the scorer and PaLM 2-L-IT as the optimizer. Each dot is the average accuracy across all (up to 8) generated instructions in the single step, and the shaded region represents standard deviation. See Section 5 for more details on experimental setup.

Table 1: Top instructions with the highest GSM8K zero-shot test accuracies from prompt optimization with different optimizer LLMs. All results use the pre-trained PaLM 2-L as the scorer.

Source	Instruction	Acc
<i>Baselines</i>		
(Kojima et al., 2022)	Let's think step by step.	71.8
(Zhou et al., 2022b)	Let's work this out in a step by step way to be sure we have the right answer.	58.8
	(empty string)	34.0
<i>Ours</i>		
PaLM 2-L-IT	Take a deep breath and work on this problem step-by-step.	80.2
PaLM 2-L	Break this down.	79.9
gpt-3.5-turbo	A little bit of arithmetic and a logical approach will help us quickly arrive at the solution to this problem.	78.5
gpt-4	Let's combine our numerical command and clear thinking to quickly and accurately decipher the answer.	74.5


ars TECHNICA

BABY STEPS, BABY STEPS —

Telling AI model to “take a deep breath” causes math scores to soar in study

DeepMind used AI models to optimize their own prompts, with surprising results.

BENJ EDWARDS - 9/19/2023, 5:38 PM

Enlarge

93 Google DeepMind researchers recently developed a technique to improve math ability in AI language models like ChatGPT by using other AI models to improve prompting—the written instructions that tell the AI model what to do. It found that using human-style encouragement improved math skills dramatically, in line with earlier results.

In a paper called "Large Language Models as Optimizers" listed this month on arXiv, DeepMind scientists introduced Optimization by PROmpting (OPRO), a method to improve the performance of large language models (LLMs) such as OpenAI's ChatGPT and Google's PaLM 2. This new approach sidesteps the limitations of traditional math-based optimizers by using natural language to guide LLMs in problem-solving. "Natural language" is a fancy way of saying everyday human speech.

Andrej Karpathy
@karpathy

The hottest new programming language is English

3:14 PM · Jan 24, 2023 · 4.1M Views

AI tested for “empathy”

This Issue Views 234,433 | Citations 46 | Altmetric 5594 | Comments 7

Original Investigation

April 28, 2023

Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum

John W. Ayers, PhD, MA^{1,2}; Adam Poliak, PhD³; Mark Dredze, PhD⁴; [et al](#)

[» Author Affiliations](#)

JAMA Intern Med. 2023;183(6):589-596. doi:10.1001/jamainternmed.2023.1838

 Editorial Comment

 Related Articles

 Full Text

Key Points

Question Can an artificial intelligence chatbot assistant, provide responses to patient questions that are of comparable quality and empathy to those written by physicians?

Findings In this cross-sectional study of 195 randomly drawn patient questions from a social media forum, a team of licensed health care professionals compared physician's and chatbot's responses to patient's questions asked publicly on a public social media forum. The chatbot responses were preferred over physician responses and rated significantly higher for both quality and empathy.

Meaning These results suggest that artificial intelligence assistants may be able to aid in drafting responses to patient questions.

Abstract

Importance The rapid expansion of virtual health care has caused a surge in patient messages concomitant with more work and burnout among health care professionals. Artificial intelligence (AI) assistants could potentially aid in creating answers to patient questions by drafting responses that could be reviewed by clinicians.

Objective To evaluate the ability of an AI chatbot assistant (ChatGPT), released in November 2022, to provide quality and empathetic responses to patient questions.

Design, Setting, and Participants In this cross-sectional study, a public and nonidentifiable database of questions from a public social media forum (Reddit's r/AskDocs) was used to randomly draw 195 exchanges from

“Of the 195 questions and responses, evaluators preferred chatbot responses to physician responses in 78.6% (95% CI, 75.0%-81.8%) of the 585 evaluations...The proportion of responses rated as *good* or *very good* quality (≥ 4), for instance, was higher for chatbot than physicians (chatbot: 78.5%, 95% CI, 72.3%-84.1%; physicians: 22.1%, 95% CI, 16.4%-28.2%). This amounted to 3.6 times higher prevalence of *good* or *very good* quality responses for the chatbot. **Chatbot responses were also rated significantly more empathetic** than physician responses ($t=18.9$; $P<.001$).”

AI used by mother of a boy to end her son's “diagnostic odyssey”

ON THE SHOW SHOP WELLNESS PARENTS FOOD

TODAY *all day*

HEALTH & WELLNESS

A boy saw 17 doctors over 3 years for chronic pain. ChatGPT found the diagnosis

Alex experienced pain that stopped him from playing with other children but doctors had no answers to why. His frustrated mom asked ChatGPT for help.

Alex saw 17 doctors over three years for his chronic pain, but none were able to find a diagnosis that explained all of his symptoms, his mom says. Courtesy Courtney

AI in medicine in 2025 (science fiction in 2022?)

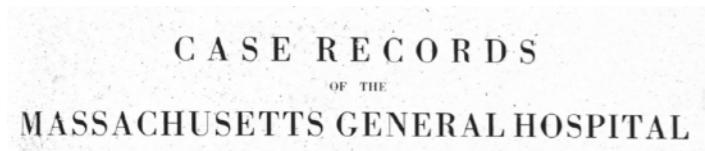
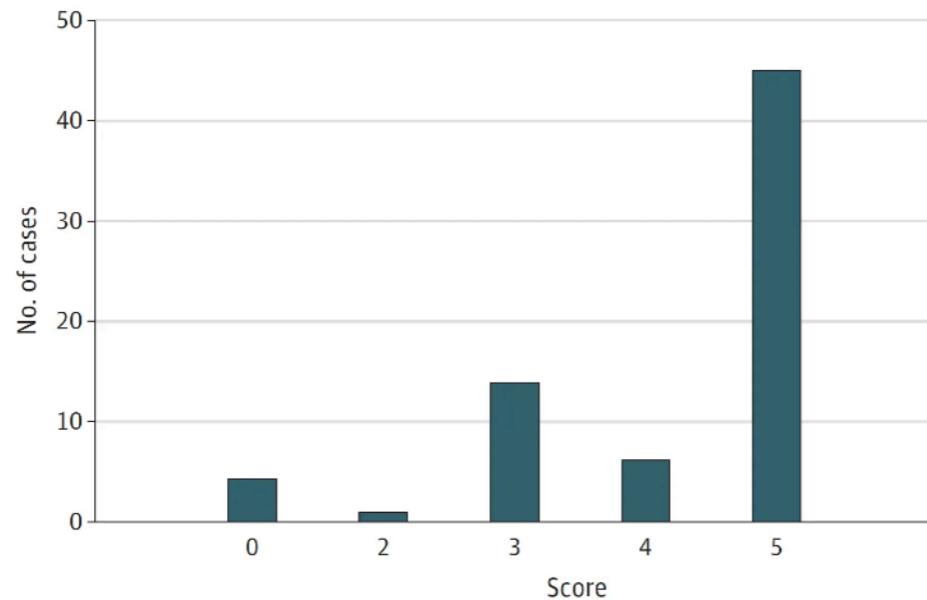



Figure. Performance of Generative Pre-trained Transformer 4 (GPT-4)

TODAY ON THE SHOW SHOP WELLNESS PARENTS FOOD

TODAY all day

HEALTH & WELLNESS

A boy saw 17 doctors over 3 years for chronic pain. ChatGPT found the diagnosis

Alex experienced pain that stopped him from playing with other children but doctors had no answers to why. His frustrated mom asked ChatGPT for help.

This Issue Views 234,433 | Citations 46 | Altmetric 5594 | Comments 7

Original Investigation

April 28, 2023

Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum

John W. Ayers, PhD, MA^{1,2}; Adam Poliak, PhD³; Mark Dredze, PhD⁴; *et al*

» Author Affiliations

JAMA Intern Med. 2023;183(6):589-596. doi:10.1001/jamainternmed.2023.1838

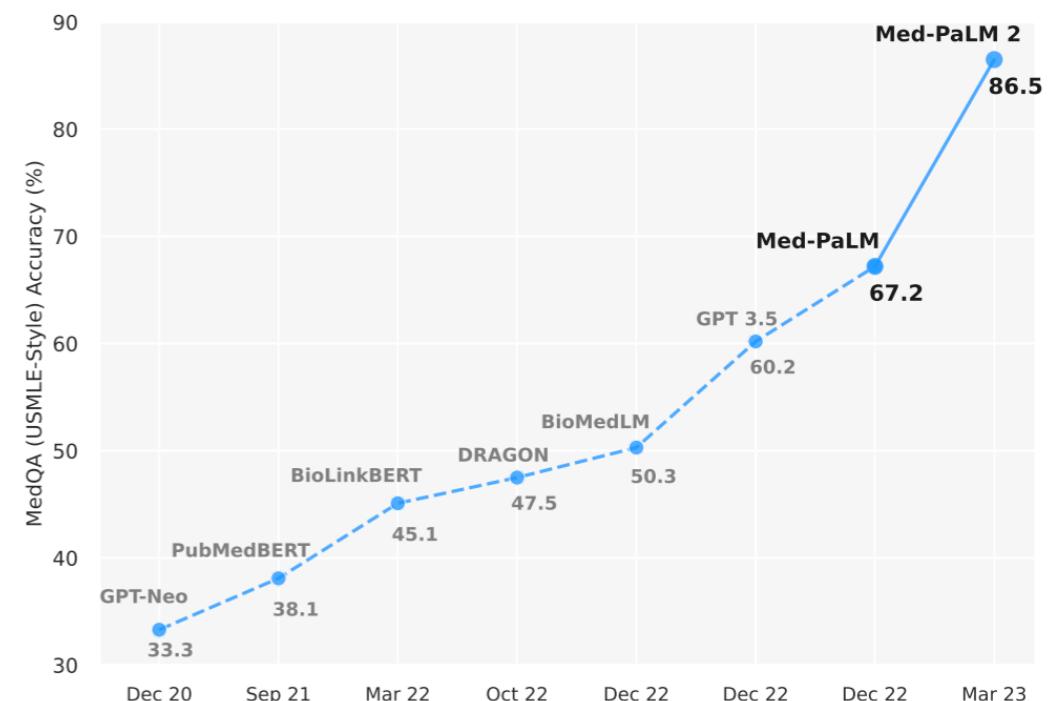
Editorial Comment

Related Articles

Key Points

Question Can an artificial intelligence chatbot assistant, provide responses to patient questions that are of comparable quality and empathy to those written by physicians?

Findings In this cross-sectional study of 195 randomly drawn patient questions from a social media forum, a team of licensed health care professionals compared physician's and chatbot's responses to patient's questions asked publicly on a public social media forum. The chatbot responses were preferred over physician responses and rated significantly higher for both quality and empathy.


Meaning These results suggest that artificial intelligence assistants may be able to aid in drafting responses to patient questions.

Abstract

Importance The rapid expansion of virtual health care has caused a surge in patient messages concomitant with more work and burnout among health care professionals. Artificial intelligence (AI) assistants could potentially aid in creating answers to patient questions by drafting responses that could be reviewed by clinicians.

Objective To evaluate the ability of an AI chatbot assistant (ChatGPT), released in November 2022, to provide quality and empathetic responses to patient questions.

Design, Setting, and Participants In this cross-sectional study, a public and nonidentifiable database of questions from a public social media forum (Reddit's r/AskDocs) was used to randomly draw 195 exchanges from

This is incredible progress...

...but both AI and our evaluations of AI are limited.

- Hallucinations / confabulations
- What data are the model trained on? Are they representative?
- How will humans and AI work together? Does AI lead to automation bias? Alert fatigue? How will we keep the human in the loop?
- How is the performance changing over time?
- What *values* are in the model?
- Do we have clinical-grade evidence of the efficacy of AI?

Q & A