| Chapter 27 | Name | |--------------------------------------|---| | Planets and Solar System | Period | | SECTION 27.1: THE INNER PLANETS | | | Objectives: | | | 1. Describe the characteristics of t | ne four inner planets. | | 2. Compare the positions of the in | ner planets in orbit. | | Key Vocabulary: | | | inner planets | | | outer planets | | | | The planets in our solar system are divided into two groups. | | | Theare those found closest to the Sun: | | TIMO DI ANIFTA DI NIFICUDODO | The inner planets are sometimes called the | | TWO PLANETARY NEIGHBORS | Theare those found beyond the asteroid belt (located between Mars and Jupiter): | | | The outer planets are known as the(Jupiter-like) planets. The first four of the outer planets are considerably than Earth, and areplanets with an outer layer that is mostly hydrogen gas, with compressed hydrogen (making a hot liquid) near the center. These planets are than Earth, and all have** | | INNER PLANETS | | |---------------|---| | MERCURY | Planet located the Sun in only Earth days. Rotates once every 59 Earth days. Smallest of the terrestrial planets. Very | | VENUS | Earth's "sister" planet, because it is | | | Fault and fracture systems shows past tectonic activity. | |------|---| | | Has amade up of mostly carbon dioxide with about 3% nitrogen. | | | Yellow clouds contain droplets of concentrated sulfuric acid. | | | Surface pressure is about 90 times greater than it is on Earth. | | | •(carbon dioxide in atmosphere) | | | making a surface temperature of 475° C.** | | | When Venus is behind Earth in its orbit, the sun sets first and Venus is seen in the evening twilight of the western sky. Venus is called an "" | | | When Venus is ahead of Earth in its orbit, it rises before the sun and is seen in the eastern sky. Venus is called a "" | | | Orbits the Sun in 687 Earth days. | | | Rotates once in just over 24 Earth hours. | | | About one-half the diameter of Earth. | | | Gravity is only about 2/5 that of Earth. | | | Has a very weak or non-existent magnetic field. | | MARS | Has a(almost the same angle and in the same direction), | | | • Summer days may be as warm as 27° C, while winter temperatures drop to –125° C. | | | Has a made up of 95% carbon dioxide and 5% nitrogen and | | | argon, with traces of other gases. | | | Atmospheric pressure is less than 1% that of Earth. | | | • The north cap is probably water ice, while the south | | | cap may contain frozen carbon dioxide. | | | Temperature differences between the polar caps and the warmer soil in spring leads to strong winds and
swirling dust storms that often cover the entire planet. | |---|---| | | The northern hemisphere is a smooth lowland plain of volcanic material, with few craters. | | | On a northern plain is the | | | ** It is more than 500 kilometers across and about 26 kilometers high. That is about 3 times higher than Mauna Loa (Earth's largest volcano). | | | The southern hemisphere is a highland fractured by many large craters and cut by small channels. | | | • Cutting across the craters of the southern hemisphere is the, a, a, a | | | • At present, water cannot exist on the surface of Mars, because it would quickly boil, evaporate, and freeze – all at the same time. | | | Water may be trapped as ice beneath the surface. | | SECTION 27.1 REVIEW | | | 1. Into what two groups are the planets | divided? What are the main characteristics of each group? | | 2. Why does Mercury have no atmosphe | ere? | | 3. Why is the surface of Venus so hot? | | | 4. Why does Mars have seasons? | | | | | | | | # SECTION 27.2: THE OUTER PLANETS # Objectives: - 1. Describe the characteristics of each of the outer planets. - 2. Explain the orbiting pattern of Neptune, Pluto and Charon. | THE OUTER PLANETS | and Gaia, and the father of | , , | reek mythology, this was the son of Uranus | |-------------------|--------------------------------------|--|--| | | | Greek name, earliest supreme god, father of the sea. | or Saturn. | | | | Norman Harrie, the god of the sea. | | | | | _ – Roman name, the god of the underworld. | | | | | (Uranus, smallest of the | | | | layer). | | (their surface is the uppermost gas | | JOVIAN PLANETS | Planets are | mainly of the | hydrogen and helium. | | | These planets have molecular hydroge | e a three-layered structure (dense hot core,
n). | | | | • | is a state similar to I | iquid metal. It is caused by the pressure | | | | er layer of the planet. | | | | • | ** | orbiting over the planet's equator. | | | Saturn's rings are h | nighly visible, the others are faint ring systems. | | | JUPITER | • Takes 11.9 Earth ye | ears to orbit the Sun. | | | JOFFIER | • | | , once in just under 10 hours. | | | •in our solar system. | |--------|---| | | Has at least | | | Has more than twice the mass of all other planets combined. | | | • Has theknown | | | We have observed auroras on Jupiter. | | | Radiates about twice as much heat back into space as it receives from the Sun. The extra heat is thought to
come from Jupiter's original heat of formation and from contraction due to gravity. | | | High velocity winds blow parallel to equator. | | | • | | | • Has the **(Ganymede). | | | Dark bands are areas of sinking gases; Bright bands are areas of rising gases. | | | Rings are made from dust that was kicked off small moons surrounding Jupiter when these moons were
struck by comets or asteroids (very hard to see). | | | Takes nearly 30 years to complete one orbit. | | | Rotates once about every 10 hours. | | | Has at least 31 moons. | | | Also has bands of rising and sinking gases. | | SATURN | •, actually lower than water (Saturn | | SATURN | would float in water!)** | | | Radiates than it receives from the Sun. | | | Strong magnetic field. | | | •of the Jovian planets. | | | Rings are made mostly of ice and rock pieces. | | URANUS | Takes 84 years to complete one orbit. Rotates once every 17.2 Earth hours. Has 21 moons. Average surface temperature is about -200°C. Axis is almost tipped over, so it*** Magnetic field is not tipped over. Has a faint ring system that includes a partial ring, or ring arc. Need a telescope to see this planet from Earth. | |---------------|--| | NEPTUNE | Takes about 165 years to orbit the Sun. Rotates once every 16.1 Earth hours. Has 11 moons. Has a magnetic field. The magnetic axis is tipped about 45°. Has winds of 2000 km per hour. Average temperature is about -225° C. Atmosphere is 74% hydrogen, 25% helium, and 1% methane. had been Need a telescope to see this planet from Earth. Has a faint ring system. | | NEPTUNE/PLUTO | Neptune is the eighth planet from the Sun, but occasionally Pluto (dwarf planet) is closer to the sun. Every 248 years Pluto's orbit brings it closer to the Sun than Neptune. Pluto stays nearer to the Sun for about 20 years. | | PLUTO | It is large enough for its gravity to pull it into the shape of a ball but it is too small to clear other objects and debris out of its path around the sun. Diameter of 2,274 km; Smaller than seven of our solar systems moons (including our Moon). Orbits the Sun once every 247.7 Earth years. Pluto orbits in a region called the Kuiper (KY-per) Belt Rotates once every 6.4 Earth hours. Surface temperatures are probably between -210 and -235° C. Most of its atmosphere is frozen, when the planet is | |--|---| | | Unknown density, however, scientists believe Pluto consists of 70% rock and 30% water. Averages 39.5 AU from the Sun. Need a telescope to see this planet from Earth. | | SECTION 27.2 REVIEW 1. What are some of the main diff | erences between the Jovian and terrestrial planets? | | 2. Why do Jupiter and Saturn give | off more eat than they receive from the sun? | | 3. What is unusual about Uranus's | axis of rotation? | ## **SECTION 27.3: PLANETARY SATELLITES** # Objectives: - 1. Describe the satellites of the planets. - 2. Compare and contrast the Galilean satellites of Jupiter. | 2. Compare and contrast the Ga | incur satellites of suprier. | |--------------------------------|---| | PLANETARY SATELLITES | Bodies that revolve around planets are called, or moons. Except for Mercury and Venus, each planet in our solar system has at least one natural satellite. | | SATELLITES OF EARTH AND MARS | Earth has one natural satellite, the Moon. hastiny natural, Phobos and Deimos. Phobos and Deimos both have irregular shapes. Phobos is closer to Mars and it circles Mars more than three times each day. | | JUPITER'S MOONS | Jupiter has The(lo, Europa, Ganymede, and Callisto) are known as the in honor of their discoverer, Galileo Galilei. lo is located closest to Jupiter, and is At least nine active volcanoes have been observed. lo volcanoes contain sulfur, sulfur dioxide, and other sulfur compounds. These cause lo's distinctive surface color. It varies from yellow-orange to red to black. lo has a density close to our Moon.; A layer of molten rock surrounds an iron core. Appears to have a thin sulfur dioxide atmosphere. Its surface is covered with layers of sulfur and frozen sulfur dioxide. No signs of surface impact craters. | | | <u>EUROPA</u> | |----------------|--| | | Appears to have an atmosphere. | | | Appears to have a smooth and shiny white surface with a shell of water ice up to 100 km thick. | | | Evidence suggests a liquid ocean 100 km deep below the frozen surface. | | | Few surface craters. | | | Surface is marked by a crisscross pattern of bright and dark lines. | | | GANYMEDE | | | •,** larger than Mercury and Pluto. If | | | Ganymede orbited the Sun, it would probably be considered a planet. | | | Has a; probably made up of a lot of ice around a rocky core. | | | Crust is believed to be a layer of water ice. | | | Only Jupiter moon that | | | Might have a subsurface ocean of salty liquid water several km deep. | | | CALLISTO | | | •in our solar system. | | | •of the Galilean satellites. | | | Oxygen detected, probably released by sunlight striking its icy surface. | | | Interior may be a mixture of ice and rock, with a rocky core. | | | Might have a subsurface ocean of salty liquid water several kilometers deep. | | | Has at least 31 moons. | | SATURN'S MOONS | First nine moons were discovered before 1900. | | | Some of the "newest" moons still have to be confirmed. | | | | | | <u>TITAN</u> | |-----------------|---| | | The second largest moon in our solar system. | | | Seems to be about half rock and half frozen water. | | | • ** | | | Nitrogen makes up 90-95%. Most of the remaining atmosphere is methane with traces of hydrogen cyanide and acetylene. Atmospheric pressure is about 1.5 times Earth's. | | | • Surface temperature is about –180° C. | | | Atmospheric gases turn to liquid, and the droplets form a dense orange smog that hides the surface. | | | Known to have 21 moons. | | | •, Umbriel,, | | | and).** | | | They all lack atmospheres and have many impact craters. | | | Oberon's impact craters are partly flooded with dark material. | | MOONS OF URANUS | Umbriel has an unusual dark surface. | | | Ariel's cratered surface is crisscrossed by valleys and faults. | | | <u>MIRANDA</u> | | | Miranda is deeply scarred with V-shaped grooves and parallel ridges. | | | Some scientists theorize that Miranda has been shattered as many as five times during its existence. | | | Other scientists believe the surface features resulted from upwelling of partly melted ice. | | | TRITON | | NEPTUNE'S MOONS | Triton is one of the 11 moons of Neptune. | | | About 4/5 the size of Earth's Moon. | | | The southern ice cap is made of methane and ammonia. | |--------------|--| | | Ice volcanoes of nitrogen have been seen erupting. | | | Has a very thin atmosphere. | | | CHADON | | | <u>CHARON</u> | | PLUTO'S MOON | About one half the size of Pluto. | ### **SECTION 27.3 REVIEW** - 1. What are the moons of the inner planets? - 2. What makes Titan an interesting moon? - 3. Why are small moons, like Deimos, potato-shaped, while larger moons are spherical? - 4. Hypothesize why the Jovian planets have so many moons. Where do you think the moons came from? | SECTION 27.4: SOLAR-SYSTEM DEBRIS | | | | | | | | | | |-----------------------------------|--|---|-----------------------------------|--|--|--|--|--|--| | Objectives: | | | | | | | | | | | 1. | Identify smaller components of the solar system. | | | | | | | | | | 2. | Explain the effects of objects colliding with Earth. | | | | | | | | | | Key Vo | Key Vocabulary: | | | | | | | | | | • | Comet | | | | | | | | | | • | Asteroid | | | | | | | | | | • | Meteor | | | | | | | | | | • | • Meteorite | | | | | | | | | | • | • Meteor shower | • | Often described as "dirty snowballs." | | | | | | | | | | • | Made of dust particles trapped in a mixture of water, carbon dioxide, met | hane, and ammonia. | | | | | | | | | • | | | | | | | | | | COMETS | | ** where they consist only of a solid main body calle | d a nucleus. | | | | | | | | | • | Vast numbers of comets orbit in a cold region beyond Neptune called the | | | | | | | | | | | and in the much more distant | | | | | | | | | | • | Some comets have | that take them closer to the Sun. | | | | | | | | | Energy from the Sun heats the comet's icy surface, causing it to form a | | | | | | |-------------------------|--|--|--|--|--|--| | | – a cloud of gas and dust that expands into space. | | | | | | | | Solar wind pushes the coma material far out into space, forming a tail. | | | | | | | | A comet has two tails, one composed of gases, the other of dust particles. | | | | | | | | Since the solar wind is forming the tail, the | | | | | | | | from the Sun. | | | | | | | | As a comet moves away from the Sun back into the outer solar system, the tail actually precedes it. | | | | | | | | Halley's Comet returns to the inner solar system every 76 years. It last returned in 1986. | | | | | | | TRANS NEPTUNIAN OBJECTS | More than 375 large bodies (up to several hundred kilometers in diameter) have been detected in the Edgeworth-Kuiper Belt. These are known as | | | | | | | | are solid, rock-like masses. Most seem to have | | | | | | | | | | | | | | | | There are thousands of asteroids in the solar system, but | | | | | | | | (Ceres and Pallas), | | | | | | | | Ceres has a diameter of about 1000 km, however, most asteroids are less than 1 km long. | | | | | | | ASTEROIDS | Possibly left over material from the formation of the solar system. | | | | | | | | •around the Sun in theas the planets. | | | | | | | | Most asteroid, and lie between Mars and Jupiter. | | | | | | | | Asteroids can, and have collided with Earth in the past. | | | | | | | | Today we are looking to prevent future collisions by diverting objects before they reach Earth. | | | | | | | METEORS AND METEOROIDS | a rock or icy fragment traveling in space. They are smaller than asteroids, from less than 100 meters in diameter down to the size of a sand grain. (also called a shooting star) is the light made by a meteoroid as it passes through Earth's atmosphere. The light is caused by friction between the meteoroid and our atmosphere. On a clear, dark night about 5-15 meteors can be seen every hour. Scientists estimate that anywhere from a million to a billion meteoroids enter our atmosphere daily. Most meteoroids are tiny and burn or vaporize in the atmosphere. – when a large number of meteors streak across the sky within a few hours of one another. Meteor showers ** and particles from the tail plunge through the atmosphere as meteors. Because Earth's orbit crosses the paths of comets around the same time each year, many meteor showers occur at predictable times. | |------------------------|---| | METEORITES | | | | | • | 1% of motocritos are clas | scified as " | | _" meteorites. They appear to have | | |--------|---|---------------------------------------|---|---------------------|--------------------------|--|--| | | | | • | | | _ meteorites. They appear to have | | | | formed when molten silicates came into contact with molten metal. | | | | | | | | | • Theof meteorites is the | | | | he | | | | | | | Thousands of meteorites | have been found the | re. | | | | | IMPACT CRATERS | • | | | are bowl-shaped depres | sions that remain after a meteor or | | | | | | other object strikes Earth | | | | | | | | • | These are rare finds on Earth. Only about 150 impact craters are known to exist. Why so few? (Burn up; Geologically active) | | | | | | | | • | Impacts change Earth ge
may even provide minera | . , | rings, they provide rese | ervoirs for oil and gas deposits, and they | | | SECTIO | N 27.4 REVIEW | | | | | | | | 1. | What happens to comets as they approach the sun? | | | | | | | | | | | | | | | | | 2. | 2. Where are most asteroids found? | | | | | | | | | | | | | | | | | 3. | Explain the difference between meteoroid, meteor, and meteorite. | | | | | | | | | | | | | | | | | 4. | Most meteorites formed between | dest moon rocks. Infer why moon rocks | | | | | | | | are younger than most meteorites. |