| Name | | | How is a Star's Color Related to its Tem | perature? | |---|--|---|--|---| | blue, and Bete
Russell diagra
number of 1 fo | elgéuse is red. /
m. You will see
or brightness ar | Alpha & Beta Ce
how star brightr
id radius, all oth | some stars are brighter than others. But stars
ntauri and our Sun are yellow. In this activity y
ness, color, temperature, and class are related
er stars are compared against this number. F
lius of 2 (two times the size of the Sun). | you will make your own Hertzsprung-
d. Keep in mind that the Sun has a | | 1. <u>Draw ve</u> r | | | arate each spectral class | B Blue/ White 10,001 - 31,000 | | • 0.15 and
• 0.16 - 1.9
• 2 - 8
• 8.1 - 100
© 101 - 1,0 | 9 ← 3. In
Th
← Th
Fr
100 Pr | nportant:
ne markings for e
nese markings sl
or Example:
ne Sun has a rac | ording to the data in the table below.
each star should follow the graph to the left
how the size of the star (the star's radius)
dius of 1, it falls between 0.16 and 1.9, so mar
s of 8.8, which falls between 8.1 and 100, so | | | | 4. Im | VVhen (
Note: \ | forget to label each star as you graph them.
you mark the Sun as • label it as the Sun.
Write small – Some of these stars will be rathe | er close to each other | | | Brightness | Size
(Solar Radius) | stions on the next page.
Star Nai | me | | 5,500 | 1 | 1 | Sun | | | 28,000 | 25,000 | 15 | Acrux (Scientific name: Alpha Crucis) | | | 3,600 | 518 | 44 | Aldebaran | | | 5500 | 1.5 | 1.2 | Alpha Centauri A (write it as: α Cen A) | | | 5000 | 0.4 | 0.9 | Alpha Centauri Β (write it as: α Cen Β) | | | 8,500 | 11 | | Altair | | | 3,000 | 58,000 | | Antares | | | 4,000 | - | 25 | Arcturus | | | 15,000 | 1,000 | 40 | Atik (Also called Omicron Persei – Not to be
Omicron P | | | 3,000 | 0.004 | 0.2 | Barnard's Star | | | 22,000 | 6,400 | 6 | Bellatrix | | | 3,000 | 100,000 | 1,200 | Betelgeuse | | | 7,100 | 15,000 | 71 | Canopus | | | 8,500 | 200,000 | 200 | Deneb | | | 2,500 | 0.0007 | 0.11 | DX Cancri | | | 37,000 | 1,000,000 | 240 | Eta Carinae | | | 4,600 | 43 | 8.8 | Pollux – We're not plotting Castor as it's a six
binary stars. Its hard to break apart | | | 6,250 | 7 | | Procyon A | | | <u> </u> | | | Procyon B | | | 12,500 | 300 | 3 | Regulus | | | 10,700 | | 79 | Rigel | | | 9,600 | 25 | 1.7 | Sirius A | | | 25,000 | | 0.008 | Sirius B | | | 22,100 | 12,000 | 7 | Spica | | | | | | Stein 2051 B | | | 3,000 | 350,000 | 1,700 | UY Scuti (Largest known star) | | | 9,300 | | | Vega | | | 39.000 | 700.000 | 20 | Zeta Puppis | | ## Lab Questions: | 1. 🤇 | n your graph, in | one big circle, | circle the white dwarf stars: | Hint: There are 3 | of them in a perfect | diagonal line | |------|------------------|-----------------|-------------------------------|-------------------|----------------------|---------------| |------|------------------|-----------------|-------------------------------|-------------------|----------------------|---------------| - 2. Now circle the Supergiant stars: Hint: There are 6 of them - 3. Now circle the giant sized stars: Hint: There are 3 of them - 4. Drawing a long thin circle, circle the main sequence stars: Hint: The circle will curve - 5. Most of the stars in this activity, and most stars in reality, fall in which of the 4 categories: White dwarf, Main sequence, Giant, or Supergiant? - 6. Therefore, generally speaking, what is the relationship between temperature and a star's brightness - 7. What is the relationship you see between star color and its temperature? - 8. List the colors used in this activity from coolest to hottest - 9. How does the Sun compare to other stars on the main sequence? - 10. What spectral class does our Sun belong to? - 11. If a star is class M, what is its temperature and color? Give an example of such a star - 12. What is the largest known star and how many times larger than the Sun is it? - 13. Why is Sirius the brightest star in the night sky even though there are stars much brighter? - 14. Why do some stars have similar names? For example: Alpha Centauri A & B, Procyon A & B, and Sirius A & B - 15. Based from the graph, which star is really the brightest star in the night sky: Sirius A or Sirius B? Explain why