Physics

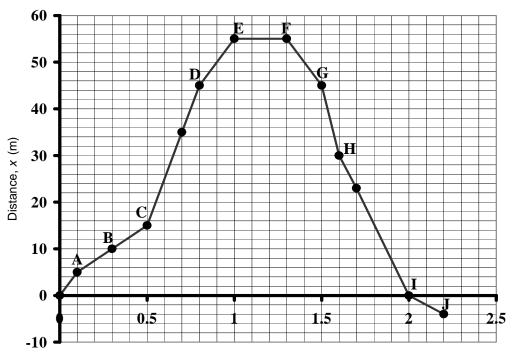
Test 3: Motion in One Dimension

page 1

Multiple Choice

Read each question and choose the best answer by putting the corresponding letter in the blank to the left.

1	l. W	Thich of the following is a scalar quantity?
	A	. displacement
	В	. velocity
	C	. force
	D	speed.
2	2. T	he slope of a position-time graph gives
	A	. displacement.
		. distance.
	C	. speed.
	D	. acceleration.
3	3. T	he speedometer on your car measures
	A	. average speed.
	В	. average velocity.
	C	. instantaneous speed.
	D	. instantaneous velocity.
4. Which change results in zero acceleration?		Thich change results in zero acceleration?
	A	. a change in only the direction of motion
	В	. a change in only the magnitude of velocity
	C	. a change in both the magnitude and direction of velocity
	D	a change in only time
5		Thich is a possible unit for acceleration?
	A	$. ft^2/s^2$
		m^2/s
		. m/s
	D	ft/s^2
6	5. T	he area underneath a velocity-time graph within a given time interval gives
	A	. displacement.
	В	. distance.
	C	. speed.
	D	. acceleration.
7	7. T	he equations of motion apply only if
	A	E
	В	
	C	. velocity is constant.


D. acceleration is constant.

	8.	A ball is dropped from a 80.0 m building. What is the ball's velocity after 3.00 s?	
		A. -29.4 m/s	
		B. 96.0 m/s	
		C. 96 m/s	
		D. 29 m/s	
	9.	How far will a rock fall in 10. s, starting from rest?	
		A. 490 m	
		B. 491 m	
		C. 980 m	
		D. 981 m	
	_ 10.	Assuming no air resistance, which scenario is <i>not</i> an example of free fall?	
		A. You watch a rope that is holding a piano 1 m above the ground as the rope suddenly breaks.	
		B. You drop your camera as you stand at a lookout over the Grand Canyon.	
		C. You throw a penny down out of a window of the Empire State Building.	
		D. You fall out of an airplane to go skydiving.	
Sho	rt Ans	swer 1	
Afte	r read	ding each sentence, write a response in the blank provided.	
11.	The	study of motion is called	
12.	The	study of the causes of motion is called	
13.	The	direction-sensitive change in position between two distinct points is called the	
14.	A qu	antity that has only magnitude associated with it is called a/an quantity.	
15.	For a situation where the displacement is the same as the change in position, the slope of a line tangent to the position-time curve gives the		
16.		object travels in a straight line, the magnitude of the displacement will be equal to the	
17.		object's position or its velocity is constant, thenis zero.	
18.	The	slope of a velocity-time graph gives the	
19.	The moti	equation of motion that is in a quadratic form is theequation of on.	

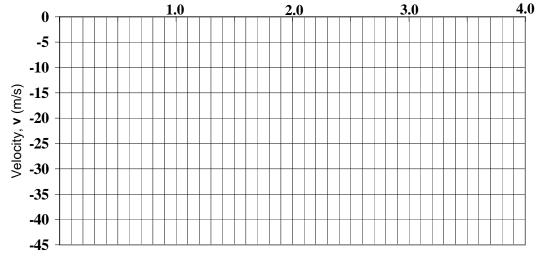
20. One common example of uniformly accelerated motion is ______.

Short Answer 2

Study the following position-time graph of the straight-line motion of a train and answer the questions below.

Time, t (h)

- 21. What is the train's displacement?
- 22. What is the train's distance covered?
- 23. During what portion of travel does the train move the fastest in a forward direction?_____
- 24. During what interval does the train move the fastest in a backward direction?
- 25. At what point does the train pass its starting point going backwards?
- 26. Over what interval does the train cover the largest distance?
- 27. During what interval is the train stopped?
- 28. Calculate the average velocity over the time interval from A to E._____
- 29. Calculate the average velocity over the time interval from F to H.


30.	Calculate the instantaneous speed at point B			
True	/Fals	e		
	the e left	following statements. Identify each as true or false by putting ${\it T}$ or ${\it F}$ in the blank .		
	31.	To identify a position on a line, each position is compared to a reference point called the origin.		
	32.	The magnitude of displacement can be equal to distance.		
	33.	Displacement is the distance between an object's final and initial positions over a given time interval.		
	_ 34.	The magnitude of a vector is always a positive quantity.		
	35.	Average speed and the magnitude of average velocity can be equal.		
	_ 36.	A negative acceleration is always a decrease in speed.		
Appl	icatio	n Problems		
	-	the problems below. Be sure to show your work, consider significant figures, our answer with the correct units in the blank provided.		
37.	x = 0	a bicyclist passing through a city accelerates after he passes the signpost marking the city limits at $t = 0$. His acceleration is constant at 5.0 m/s ² . At time $t = 0$, he is at $t = 6.0$ m and has a velocity $t = 4.0$ m/s.		
	a.	Find his position and velocity at $t = 2.0$ s.		
	_ b.	How far is he from the signpost when his velocity is 6.0 m/s?		

• ____ 38. You are in Paris, 50. m up in the Eiffel Tower. If you throw a euro downward at a velocity of 1.0 m/s, how long would it take the euro to hit the ground?

- ____ 39. In the Olympics, a high diver jumps from a height of 40. m. How long will he fall before he enters the water?
- 40. A penny is dropped from the top of the Empire State Building. The following table summarizes its velocity as a function of time, assuming no air resistance.

Velocity (m/s)	Time (s)
0	0
9.8	1.0
19.6	2.0
29.4	3.0
39.2	4.0

a. Construct a velocity-time graph for this information.

Time, t (s)

_____ b. What is the magnitude of its displacement from t = 0 s to t = 4.0 s?

____c. What is the value of the slope of the velocity-time graph for any free-falling object?