Proportional Perimeters Theorem If 2 Δ 's are \sim , then the perimeters are proportional to the measures of the corresponding sides. In other words, the perimeters of ~ triangles reduces to the same scale factor as the corresponding sides. **1.** If $\triangle DEF \sim \triangle GFH$, find the perimeter of $\triangle DEF$. Triangle drawn on paper and enlarged or reduced.... ## **Special Segments of Similar Triangles** If 2 \triangle 's are \sim , then the corresponding altitudes, angle bisectors, and medians reduce to the scale factor of the corresponding sides. In the figure, $\triangle JLM \sim \triangle QST$. \overline{KM} is an altitude of $\triangle JLM$, and \overline{RT} is an altitude of $\triangle QST$. Find RT if $$JL = 12$$, $QS = 8$, and $KM = 5$. #### Find x. LANDSCAPING The landscaping team at a botanical garden is planning to add sidewalks around the fountain. The gardens form two similar triangles. Find the distance from the fountain to the rose gardens. Find the perimeter of **10.** $\triangle CBH$, if $\triangle CBH \sim \triangle FEH$, ADEG is a parallelogram, CH = 7, FH = 10, FE = 11, and EH = 6 # **Angle Bisector Theorem** An \angle bisector in a \triangle separates the opposite side into segments that have the same ratio as the other 2 sides. $$\frac{a}{b} = \frac{c}{d}$$ ## Find x. $$\frac{20}{30} = \frac{28 \cdot x}{x}$$ $$\frac{20}{30} = \frac{28 \cdot x}{x}$$ $$\frac{20}{30} = \frac{840 - 30}{x}$$ $$\frac{20}{30} = \frac{840 - 30}{x}$$ $$\frac{20}{30} = \frac{28 \cdot x}{x}$$ $$\frac{20}{30} = \frac{840 - 30}{x}$$ $$\frac{20}{30} = \frac{840 - 30}{x}$$