Angle Bisectors #### Recall the definition of angle bisector: An angle bisector is a _____ that divides an angle into two ____ angles. ### **Medians** A ______is a segment whose endpoints are a _____triangle and the _____ of the side opposite the vertex. There are three medians in every triangle. ### **Altitudes:** An _____ of a triangle is a segment from a _____ to the line containing the opposite side and _____ to the line containing that side. - There are **three** perpendicular bisectors in a triangle. - There are **three** angle bisectors in a triangle. - There are **three** medians in a triangle. - There are **three** altitudes in a triangle. ## **Example:** - a. Name an altitude. - b. Name an angle bisector. - c. Name a median. # **Example:** - a. Name an altitude. - b. Name an angle bisector. - c. Name a median. # **Example:** - a. Name an altitude. - b. Name an angle bisector. - c. Name a median. | Find the value of x , if \overline{AD} is a median of \overline{BC} . | A | |---|--------------------------------| | Find the value of y , if \overline{AD} is an altitude of \overline{BC} . | B 5x-9 D 2x+12 C | | Find the value of x , if \overline{AD} is a median of \overline{BC} . | B | | Find the value of y , if \overline{AD} is an altitude of \overline{BC} . | A $(4y-6)^{\circ}$ D $3x + 40$ | | Find the value of x , if \overline{AD} is an angle bisector of $\angle BAC$. | A (3x +10)° B D C |