Def. Inequality

For any numbers a and b, a > b if and only if there is a positive number c such that a = b + c

Properties of Inequalities for Real Numbers	
	For all numbers <i>a</i> , <i>b</i> , and <i>c</i>
Comparison Property	a < b, $a = b$, or $a > b$
Transitive Property	1. If $a < b$ and $b < c$, then $a < c$.
	2. If $a > b$ and $b > c$, then $a > c$.
Addition and Subtraction Properties	1. If $a > b$, then $a + c > b + c$ and $a - c > b - c$.
	2. If $a < b$, then $a + c < b + c$ and $a - c < b - c$.
Multiplication and Division Properties	1. If $c > 0$ and $a < b$, then $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$.
	2. If $c > 0$ and $a > b$, then $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$.
	3. If $c < 0$ and $a < b$, then $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$.
	4. If $c < 0$ and $a > b$, then $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$.

Th. 5.8 The Ext. ∠ Inequality Th.

If an \angle is an ext. \angle of a \triangle , then its measure is greater than the measure of either of its corr. remote int. \angle 's.

Th. 5.9

If 1 side of a Δ is longer than the other side, the the \angle opposite the longer side has a greater measure than the \angle opposite the shorter side.

Th. 5.10

If $1 \angle$ of a Δ has a greater measure than another \angle , then the side opp. the greater \angle is longer than the side opp. the lesser \angle .