2. **Given:** $\angle NPO \cong \angle NPR$;

P is the midpt. of $\overline{\text{OR}}$

Prove: \angle ONP \cong \angle RNP

6. Given: \overline{NL} bisects \overline{KO} ; M is the midpoint of \overline{NL} Prove: $\Delta KLM \cong \Delta ONM$

Name	Per.	Date	

Geometry Ch. 4 proofs w.s.

1. Given: V is the midpt. of \overline{YZ} . V is the midpt. of \overline{WX} .

Prove: $\Delta XVZ \cong \Delta WVY$

2. Given: $\overline{AC} \parallel \overline{BD}$; $\overline{AC} \cong \overline{BD}$ \overline{AD} bisects \overline{CE}

Prove: $\triangle ACD \cong \triangle BDE$

4. Given: $\overline{WX} \cong \overline{WZ}$

Y is the midpt. of \overline{XZ}

Prove: $\angle X \cong \angle Z$

Name	Per.	Date	

Geometry Proofs Worksheet

1. Given: $\overline{AE} \cong \overline{FC}$; $\overline{DE} \perp \overline{AC}$; $\overline{BF} \perp \overline{AC}$; $\overline{AD} \mid \mid \overline{BC}$;

Prove: $\triangle ADE \cong \triangle CBF$

