Physics Notes - Ch. 2 Motion in One Dimension

I. The nature of physical quantities: scalars and vectors
 A. Scalar—quantity that describes only magnitude (how much), NOT including direction; ex. mass, temperature, time, volume, distance, speed, color, etc. It makes no sense to say it
 B. Vector—describes both magnitude and direction; ex. displacement, velocity, force, etc.
 1. Speed is the magnitude (amount) of velocity; velocity must include both magnitude (speed) and direction
 2. On diagrams, arrows are used to represent vector quantities; the direction of the arrow or the angle at which it points gives the direction of the vector and the magnitude of the vector is proportional to the length of the arrow.

<table>
<thead>
<tr>
<th>Vectors</th>
<th>Scalars</th>
</tr>
</thead>
<tbody>
<tr>
<td>displacement</td>
<td>distance</td>
</tr>
<tr>
<td>velocity</td>
<td>speed</td>
</tr>
<tr>
<td>acceleration</td>
<td>mass</td>
</tr>
<tr>
<td>force</td>
<td>time</td>
</tr>
<tr>
<td>weight</td>
<td>volume</td>
</tr>
<tr>
<td>momentum</td>
<td>temperature</td>
</tr>
<tr>
<td></td>
<td>work and energy</td>
</tr>
</tbody>
</table>

Frames of reference—standard for comparison; any movement of position, distance, or speed is made against a frame of reference; “with respect to Earth” is most common

We can say it is “northeast” because it is exactly 45 degrees from each axis BUT if it were 35 degrees above the x axis instead?? We would need to say 35 degrees North of East!

II. Distance vs. Displacement
 • Distance—total length moved or total “ground” covered; a scalar quantity…No direction necessary! If you ran around the track, you would go a distance of 400 meters.
 • Displacement—Defined as the change in position (Δx or delta “x” means xf-xi) with respect to a reference point. It is a vector quantity. If you ran around the track, your displacement would be “ZERO” meters. We can use displacement and distance interchangeably in this course, but they are not necessarily the same thing.
 • Note – displacement is not always equal to the distance traveled
Here are some graphs of position versus time:

Questions:
Which graph(s) show a starting position “x” away from and moving farther away from the origin in the positive direction?
Which graph(s) show an object returning toward the starting position?

III. Velocity vs. Speed

• Average speed—total distance covered divided by the total time taken; scalar quantity

• Average velocity—displacement or Δx/time; vector quantity. Since velocity is a vector, we must define it in terms of another vector, displacement. Oftentimes average speed and average velocity are interchangeable for the purposes of the AP Physics B exam. Speed is the magnitude of velocity, that is, speed is a scalar and velocity is a vector. For example, if you are driving west at 50 miles per hour, we say that your speed is 50 mph, and your velocity is 50 mph west. We will use the letter \(v \) for both speed and velocity in our calculations, and will take the direction of velocity into account when necessary.

• Instantaneous velocity is the velocity at a specific time which may be different from the average velocity which will be seen in the graphs below.

Example #1 : Let’s say you travelled 25 meters North in 2 minutes, stopped for 10 minutes, then continued in the same direction going 400 meters in 8 minutes…calculate your average velocity for the trip.
IV. Acceleration: In this course we will only calculate with constant accelerations. (In order to work well with changing accelerations, you would need to use calculus.)

- Average acceleration is the rate of change of velocity; change in velocity with time \(\frac{\Delta v}{\Delta t} \) if an object’s velocity is changing, it’s accelerating—even if it’s slowing down and even if the only thing changing is its direction of travel. An object traveling in a circle at a constant speed is still changing its velocity because its direction is changing constantly...SO it is accelerating!!

Example #2: If a car goes from rest to 48 mph (miles per hour) in 4 seconds, calculate its acceleration.

- Note – At first you might think that + acceleration is speeding up and negative acceleration is slowing down – NOT necessarily. You only have negative acceleration when the direction of the acceleration is opposite to the direction that is defined as positive. It’s all about the direction of the acceleration – not speed up or slow down.

V. Free Fall – We say an object is in free fall when its motion is controlled by gravity.

\[
a = \frac{\Delta v}{t} = \frac{v_f - v_i}{t}
\]

In the picture to the right, a ball is thrown upward with some initial velocity. As it goes up, its speed decreases until it instantaneously becomes zero at the top. Then it speeds up as it falls back down. If “up” has been defined as positive, then the balls velocity is:
- positive as it moves upward slowing down;
- becomes zero at the top
- negative as it moves downward gaining speed

BUT, the ball’s acceleration has the same negative value at all positions!

Try it using the formula!!

\[
a = \frac{v_f - v_i}{t}
\]

Ex: initial speed going up is 40 m/s and it travels upward for 4 seconds and stops momentarily then falls for 4 seconds and reaches a final speed of 40 m/s. Using the signs for up and down motion (given above), calculate the average acceleration for each part of the trip, then the average acceleration for the total trip.

This acceleration is also present at the top EVEN WHEN the instantaneous speed is ZERO! This acceleration is due to gravity and (when “a” is this special case, due to gravity – we label it “g” and call it “free fall” acceleration). Gravity does not take a holiday just because the object reached the top of its trajectory!
- On Earth, \(g = 32 \text{ ft/s}^2 = 32 \text{ Feet per second each second} \). This is the same as \(9.81 \text{ meters per second each second} \) (we regularly round it to \(10 \text{ m/s}^2 \) to make calculations easier).

Example #3: A ball is dropped from the top of a cliff. How fast will it be traveling after 1, 2, and 3 seconds? How high is the cliff if the ball hits the bottom in 5 seconds?
• In the absence of air resistance, all objects, regardless of their mass or volume, dropped near the surface of a planet fall with the same constant acceleration.

• Look at the picture above. The feather and the apple in a vacuum chamber fall at the same rate!

• In the presence of air resistance, objects dropped will initially accelerate at \(g \) and then the acceleration will decrease to zero once terminal velocity is reached.

See the kinematic formulas (last page of these notes) for use in these examples.

Example # 4: A rocket traveling at 88 m/s is accelerated uniformly to 132 m/s over a 15 s interval. What is the displacement during this time?

Example # 5: A flowerpot falls from rest on a windowsill 25.0 m above the sidewalk.

a. How fast is the flowerpot moving when it strikes the ground?

b. How much time does a bug on the sidewalk below have to move out of the way before the flowerpot hits the ground or the bug?
Example #6: The graph shows position as a function of time for two trains running on parallel tracks. Which is true?

1. At time t_B, both trains have the same speed.
2. Both trains speed up all the time.
3. Both trains have the same speed at some time before t_B.
4. Both trains have the same acceleration at some time before t_B.
Simple Kinematic Formulas
(For cases where the object starts from rest; in other words, the initial velocity is 0.)

\[\Delta x = v_{\text{average}} \times t \]

200mi = 50mi/hr \times 4hrs. 50mi/hr must be the average velocity for the whole trip. Do not use this formula for instantaneous velocity or to try to find a velocity at a particular moment.

Use this formula to find the \textit{velocity} at a particular moment (instantaneous velocity), the \textit{acceleration}, or the \textit{time} if the other terms are known.

\[v_f = at \]

Use this formula to find acceleration, the change in velocity, or the elapsed time if the other terms are known.

\[a = \frac{\Delta v}{t} \]

Use this to find acceleration, the change in velocity, or the elapsed time if the other terms are known.

\[\Delta x = \frac{1}{2} at^2 \]

Use this to find the \textit{displacement} (change in position,) the \textit{acceleration}, or the \textit{time} when the other terms are known.

General Kinematic Formulas: The Big Three Formulas for uniformly accelerated motion
(The formulas below are general. If the object starts from rest then the initial velocity is 0 and the formulas may be simplified to the forms above.)

\[v_f = v_i + at \]

Use this to find the \textit{final velocity}, the \textit{original velocity}, the \textit{acceleration}, or the elapsed \textit{time} when the other terms are known.

\[v_f^2 = v_i^2 + 2a\Delta x \]

Use this to find the \textit{final velocity}, the \textit{original velocity}, the \textit{acceleration}, or the \textit{displacement} when the other terms are known.

\[\Delta x = v_i t + \frac{1}{2} at^2 \]

Use this to find the \textit{displacement}, the \textit{original velocity}, the elapsed \textit{time}, or the \textit{acceleration} when the other terms are known.

Physics HW probs: P 69–73 #s 3, 8, 10, 13, 16–19, 21, 23, 27, 30, 32, 34, 38, 42, 43, and 46.