CHAPTER 2
UNDERSTANDING THE MICROBIOLOGY LABORATORY
INTRODUCTION

• In order to identify which antibiotic to use need to identify organisms causing infection

• Functions of microbiology laboratory are
 – Assist in diagnosis
 – Identify organism
 – Provide best antimicrobial agent needed
 – Provide information that show any changes in causative organism and sensitivity to antibiotics
INTRODUCTION

• Laboratory will aim at reproducing conditions for the pathogenic microorganism to grow in order to be able to identify it
• In order to run the appropriate tests and interpret results need to rely on a variety of information including patient signs and symptoms.
• Specimen must be properly collected, transported, and stored in order to be able to detect the appropriate organism
• Along with interpretation of organism also can provide advice on how to treat
IDENTIFICATION OF BACTERIA

• Examining bacterial cells under microscope on glass slides can reveal important information about structure, shape, and arrangement.

• Three basic shapes
 — Cocci (round or spherical)
 — Bacilli (rod-shaped)
 — Spirella (spiral)

• Gram staining
 — Gram positive absorb dark blue dye and appear blue or purple under microscope
 — Gram negative do not absorb blue dye but when counterstained with red dye appear pink under microscope
IDENTIFICATION OF BACTERIA

• Culture methods—a variety of mediums are used to grow a specimen
• Cultures can take approximately 24, 48, or 72 hours to grow
• Cultures made need to be grown in an aerobic or anaerobic environment
• When grown on a solid media, bacteria will multiply many times; the distinct group will appear as a colony and can be seen by the naked eye
• Colony size, color, and shape vary between species
• Can grow in pairs, clusters, chain
• An experienced microbiologist is able to distinguish and identify the different colonies
IDENTIFICATION OF BACTERIA

- Cocci can be grouped by formation
 - Mono (bacteria in single formation)
 - Diplo (paired bacteria)
 - Strepto (chain-like formation)
 - Staphylo (clustered formation)
IDENTIFICATION OF BACTERIA

• Bacilli
 – Rod-shaped
 – May possess flagella
 – Pairs (diplobacillus) and chains (streptobacillus)
 – *E. coli* (normal flora of intestinal tract; may migrate to urinary tract causing UTI or to blood stream causing bacteremia)
 – May form spores
IDENTIFICATION OF BACTERIA

• Spirilla- Spirochetes
 – Gram negative
 – Spiral-shaped
 – For example, syphilis, Lyme disease
IDENTIFICATION OF VIRUSES

- Done by two methods—culture of virus or direct detection by electron microscope or detection of specific antibodies in blood by serology tests
 - Such as the ELISA test
 - Remember viruses do not culture the same as bacteria making it more difficult
COLLECTION OF SPECIMENS FOR MICROBIOLOGICAL INVESTIGATION

• Quality of the specimen sent to the lab has a major impact on the results
 – Collection
 – Transport
 – Storage
 – Patient illness and treatment
 • Such as ensuring specimen is collected prior to being given antimicrobial meds
COLLECTION OF SPECIMENS FOR MICROBIOLOGICAL INVESTIGATION

- Urine
- Sputum
- Feces
- Wound swabs
- Other swabs
- Blood cultures
- CSF
BIOHAZARD LABELS

• Should be used to indicate specimen may contain a particularly hazardous pathogen

• Usually used on specimens that are known or suspected of containing blood-borne pathogens

• Labels give the laboratory personnel ability to prepare for the particular handling of specimen during transportation and during testing
TRANSPORT OF SPECIMENS

- Potentially infectious material presents a hazard in transporting specimen
- Person that is collecting specimen is responsible for ensuring that they follow proper protocol
 - Specimen container is leak proof and sealed securely
 - The outside of the container is free of any body fluids
 - Container is not overfilled
 - Biohazard labels are placed on container if needed and specimen is placed in biohazard bag
 - Requisition form is accompanying specimen and is placed in separate pocket
INFORMATION ON REQUEST FORMS

• Request forms provide very important information, therefore Should be completed accurately
 – Identification of causative organisms that may influence testing
 – Accurate site of the specimen collection
 – Date and time of collection
 – Signs and symptoms including site of infection such as number of times of vomiting episodes
 – If person has traveled abroad
INTERPRETATION OF LABORATORY REPORTS

• Results of microbiological examination must be interpreted in combination with clinical evaluation
• Should treat the patient not the results of tests
• Sometimes specimen are contaminated at time of collection, therefore results may not warrant certain medications such as antibiotics such as being febrile
• When treatment is indicated the lab report(s) will provide information needed to choose suitable medication such as antibiotics
A

Name: PARKER, Alice
Hosp. No.: (0000) T456378
Age/D.o.B: 47 YRS 03/02/47
Sex: F
Location: Female Surgical
Doctor: Malcolm, C

MICROBIOLOGY – Routine cultures

<table>
<thead>
<tr>
<th>Source</th>
<th>Lab No.</th>
<th>Collection Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOUND CULTURE</td>
<td>MB–93–93678</td>
<td>20APR94</td>
</tr>
</tbody>
</table>

Culture
STAPHYLOCOCCUS AUREUS: a heavy growth

Sensitivity
ERYTHROMYCIN: S
GENTAMICIN: S
FUSIDIC Ax: S
PENCILLIN: R
METH/FLUCLOX: S
VANCOMYCIN: S

C

Name: SMITH, Alexander
Hosp. No.: (0000) T345681
Age/D.o.B: 60 YRS 03/05/34
Sex: M
Location: Male Surgical
Doctor: Peters, D

MICROBIOLOGY – Routine cultures

<table>
<thead>
<tr>
<th>Source</th>
<th>Lab No.</th>
<th>Collection Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>URINE CULTURE</td>
<td>MB–93–93676</td>
<td>22APR94</td>
</tr>
</tbody>
</table>

Microscopy
>50 White blood cells/cmm
11–50 Red blood cells/cmm
<1 Casts/cmm

Culture
KLEBSIELLA AEROGENES: 10–100,000 organisms/ml

Sensitivity
KLEBAER:
AMP/AMOXY: R
CEPHALEXIN: R
NITROFURANTOIN: S
CO–TRIMOXAZOLE: S
GENTAMICIN: S
TRIMETHOPRIM: S

B

Name: GREEN, James
Hosp. No.: (0000) T987654
Age/D.o.B: 73 YRS 03/01/21
Sex: M
Doctor: Stringfellow, E
Ward: Medical unit

MICROBIOLOGY – Routine cultures

<table>
<thead>
<tr>
<th>Source</th>
<th>Lab No.</th>
<th>Collection Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESPIRATORY CULTURES</td>
<td>MB–93–93675</td>
<td>30APR94</td>
</tr>
</tbody>
</table>

Microscopy
Acid fast Bacilli seen

Preliminary report
AFB cultures incubated, further report to follow

D

Name: BROWN, John
Hosp. No.: (0000) T987654
Age/D.o.B: 81 YRS 01/08/12
Sex: M
Location: Care of the elderly
Doctor: Jones, B

MICROBIOLOGY – Routine cultures

<table>
<thead>
<tr>
<th>Source</th>
<th>Lab No.</th>
<th>Collection Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOUND CULTURE</td>
<td>MB–93–93674</td>
<td>30APR94</td>
</tr>
</tbody>
</table>

Culture
ENTEROCOCCUS FAECALIS: a moderate growth
PROTEUS SPECIES: a moderate growth
LACTOSE FERMENTING COLIFORM: a scanty growth

PRESSURE SORE

 ENTEROCOCCUS FAECALIS: a moderate growth
PROTEUS SPECIES: a moderate growth
LACTOSE FERMENTING COLIFORM: a scanty growth