Chapter 48: Neurons, Synapses, and Signaling

Concept 48.1 Neuron organization and structure reflect function in information transfer

1. What is a neuron? Nerve cells that transfer information within the body.

2. Neurons can be placed into three groups, based on their location and function.

<table>
<thead>
<tr>
<th>Type of Neuron</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensory</td>
<td>Transmit information from a sense receptor to the brain or spinal cord</td>
</tr>
<tr>
<td>Interneurons</td>
<td>Integrate information within brain or spinal cord; connect sensory and motor neurons; located entirely within the CNS</td>
</tr>
<tr>
<td>Motor neurons</td>
<td>Transmit information from the brain or spinal cord to a muscle or gland; Cause muscle contraction or gland secretion</td>
</tr>
</tbody>
</table>

3. Which division of the nervous system includes the brain and spinal cord?

4. This sketch shows two neurons. Label the following elements of this figure: cell body, dendrites, axon, synapse, presynaptic cell, postsynaptic cell, synaptic vesicles, synaptic terminal, and neurotransmitter.

5. What is shown in the box above? What do the red spheres represent?

Copyright © 2010 Pearson Education, Inc.
6. What is indicated by the red arrows in the main figure?

7. What are glial cells?

8. All cells have a membrane potential across their plasma membrane. What is the typical resting potential of a neuron? (\(\text{C}^{-70}\))

9. On the sketch below, label the following: outside cell, inside cell. Show where the concentrations of \(\text{Na}^+\) and \(\text{K}^+\) are highest.

10. How are the concentration gradients of \(\text{Na}^+\) and \(\text{K}^+\) maintained?

11. As you see in the figure above, in a resting neuron, the outside of the membrane is positively charged relative to the inside of the membrane. If positively charged ions flow out, the difference in charge between the two sides of the membrane becomes greater. What is the increase in the magnitude of the membrane potential called?

12. When a stimulus is applied, ion channels will open. If positively charged ions flow in, the membrane is said to depolarize. If depolarization causes the membrane potential to drop to a critical value, a wave of depolarization will follow. What is this critical value called?

13. What is the wave of depolarization called?
14. Just like toppling dominoes in a row, either the threshold of depolarization will be reached and an action potential will be generated, or the threshold will not be reached and no wave will occur. What is this response to stimulus called?

15. Figure 48.10 contains almost all you need to know about nerve impulse transmission, so it is worth some careful study time. Let's approach it in steps.

a. Label Na⁺, K⁺, and their respective ion channels.

b. Label the Resting state figure. Are the Na⁺ and K⁺ channels open, or closed?

c. Label Depolarization. What triggers depolarization? What channels open? What occurs if the depolarization threshold is reached?

D. Label Stage 4 in the figure Repolarization. How is the charge on the membrane reestablished?

E. Label these regions of the graph: x- and y-axes, threshold, resting potential, depolarization, action potential, and repolarization.

f. Let's see if you really understand this concept. Draw in another line on the graph to show what the change in membrane potential would look like if a stimulus were applied that did not reach the depolarization threshold.
16. Here is a closer look at what is happening along the membrane as a wave of depolarization (an action potential) travels along the length of the axon. Label the key elements of the figure; and to the right, explain how the action potential is conducted.

1) In response to a signal, the soma end of the axon becomes depolarized (sodium influx)

2) The depolarization spreads down the axon, while the first part of the membrane repolarizes. Na⁺ channels are inactivated + K⁺ channels are opened, the membrane cannot depolarize again.

3) Action potential continues to travel

17. What are the two types of glial cells that produce myelin sheaths?

Oligodendrocytes in the CNS, Schwann cells in the PNS

18. How does a myelin sheath speed impulse transmission? Use the figure below, and include a discussion of saltatory conduction and nodes of Ranvier in your response.

The action potentials form only at the nodes of Ranvier. In a neuron with a myelin sheath, ions can only move in and out of the cytoplasm at the nodes of Ranvier. As a result, the action potential jumps from one node to another, a process called saltatory conduction. The impulses will travel much faster than a neuron with a myelin sheath.

19. In the disease multiple sclerosis, the myelin sheaths harden and deteriorate. How would this affect nervous system function?

It would affect the communication and transfer of neurotransmitter from one neuron to another.
Concept 48.4 Neurons communicate with other cells at synapses

20. When the wave of depolarization arrives at the synaptic terminal, calcium ion channels open. What occurs to the synaptic vesicles as the Ca²⁺ level increases?

21. What is contained within the synaptic vesicles?

22. Label the figure below: synaptic vesicle, neurotransmitter, calcium ion channel, presynaptic membrane, postsynaptic membrane, and synapse.

23. Explain how an action potential is transmitted from one cell to another across a synapse by summarizing what is shown above in six steps.

1. Presynaptic membrane: Action potential depolarizes the membrane of the synaptic terminal.
2. Calcium ion channel: Open voltage-gated calcium channels in the membrane, which triggers an influx of Ca²⁺.
3. Synaptic vesicle: Elevated Ca²⁺ concentration causes synaptic vesicles to fuse with presynaptic membrane.
4. Synapse: The vesicles release the neurotransmitter into the cleft.
5. Postsynaptic membrane: Neurotransmitter binds to the ligand-gated ion channel, allowing Na⁺ and K⁺ to diffuse through channels.
6. Neurotransmitter: The neurotransmitter is released from the receptor, as the channels close, transfer over the synapse ends when neuro-diffusion occurs.
24. There are many different types of neurotransmitters. Each neuron secretes only one type of neurotransmitter. Some neurotransmitters hyperpolarize the postsynaptic membrane. Are these excitatory or inhibitory neurotransmitters?

 They are inhibitory postsynaptic potentials (IPSPs)

25. Define and explain summation.

 Excitatory postsynaptic potentials produced by different synapses on the same postsynaptic neuron add together

26. A single postsynaptic neuron can be affected by neurotransmitter molecules released by many other neurons, some releasing excitatory and some releasing inhibitory neurotransmitters. What will determine whether an action potential is generated in the postsynaptic neuron?

 The combination of EPSPs through spatial and temporal summation can trigger an Action Potential

27. Table 48.1 lists several of the major neurotransmitters. You are not expected to know their actions or secretion sites, but you should recognize that they are neurotransmitters! Go through the list that follows, and say each term aloud. Put a checkmark by any that you have heard mentioned before: acetylcholine, epinephrine, norepinephrine, dopamine, serotonin, GABA, glutamate, glycine, substance P, endorphins, and nitric oxide. That's all for this question!

28. There is one neurotransmitter we want you to memorize. It is the most common neurotransmitter in both vertebrates and invertebrates, and it is released by the neurons that synapse with muscle cells at the neuromuscular junction. If you look ahead to Chapter 50, Figure 50.29, you will see a synapse between a neuron and a muscle cell, resulting in depolarization of the muscle cell and its contraction. What is this very important neurotransmitter?

 Acetylcholine

Testing Your Knowledge: Self-Quiz Answers

Now you should be ready to test your knowledge. Place your answers here:

1. 2. 3. 4. 5. 6.