

Standardized Test Preparation *continued***INTERPRETING GRAPHICS**

The graph below shows the water pressure measured by a scientist at different depths in the ocean. Use the graph below to answer the questions that follow.

Water Pressure Versus Depth

1. What is the pressure on the object when it is 100 m underwater?
A 1.0 MPa
B 1.1 MPa
C 1.5 MPa
D 2.0 MPa

2. Based on the data in the graph, which of the following is the best estimate of the pressure at 250 m below the surface of the ocean?
F 1.7 MPa
G 2.2 MPa
H 2.6 MPa
I 5.0 MPa

3. Which of the following statements best describes the relationship between the water pressure on an object and the depth of the object in the ocean?
A Water pressure increases as the depth increases.
B Water pressure decreases as the depth increases.
C Water pressure does not change as the depth increases.
D Water pressure has no predictable relationship to the depth.

Standardized Test Preparation *continued***MATH****Read each question below, and choose the best answer.**

1. Anna-Marie has a coil of wire. She uses a balance to find that the wire has a mass of 17.8 g. She uses water displacement to find that the volume of the wire is 2.0 cm^3 . Density is equal to mass divided by volume. What is the density of the wire?
A 0.11 g/cm^3
B 8.9 g/cm^3
C 19.8 g/cm^3
D 35.6 g/cm^3

2. Hussain rode his bike 30 km this weekend. What is this distance expressed in meters?
F 0.3 m
G 300 m
H 30,000 m
I 300,000 m

3. Olivia purchased 21 tubes of oil paint at \$3.95 per tube, which includes tax. What was the total cost of the 21 tubes of paint?
A \$65.15
B \$82.95
C \$89.10
D \$93.50

4. Javi filled a container halfway full with water. The container measures 2 m wide, 3 m long, and 1 m high. How many cubic meters of water are in the container?
F 2 m^3
G 3 m^3
H 5 m^3
I 6 m^3

5. Pressure is equal to force divided by area. Jenny pushes a door with a force of 12 N. The area of her hand is 96 cm^2 . What is the pressure exerted by Jenny's hand on the door?
A 0.125 N/cm
B 0.125 N/cm^2
C 8 N/cm
D 8 N/cm^2