Chapter 8

Digital Imaging

Learning Objectives

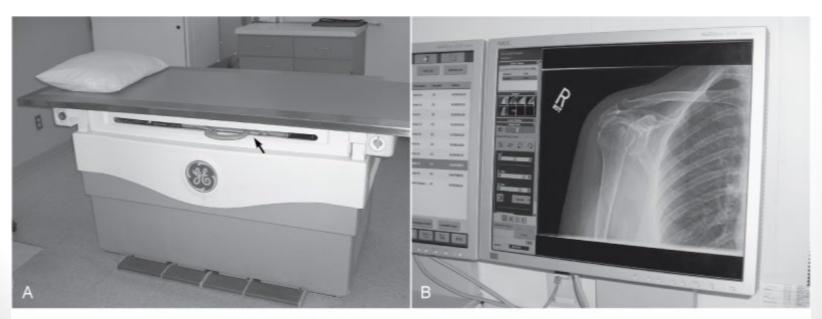
- Define the key terms used in digital imaging
- List the equipment needed to perform digital imaging
- Explain the computed radiography (CR) digital system
- Explain the digital radiography (DR) system
- Compare CR and DR digital systems
- Recognize the importance of using exposure technique charts with digital imaging
- Describe the processing and post-processing of a digital image
- Explain what a picture archival and communications system (PACS) is and how it is used

Digital Imaging

- Image is produced, processed, viewed, and stored on a computer
- Computer networks allow image viewing from outside the medical facility
- Types of digital imaging
 - Computed Radiography (CR) = cassette-based
 - Digital Radiography (DR) = cassetteless

Digital vs. Film

Computed Radiography (CR)


- Image obtained using CR cassettes contain photostimulable phosphor plates
 - Often referred to simply as IP (imaging plates)
- CR systems include a CR reader for image processing

A and C, Ballinger PW, Frank ED: Merrill's atlas of radiographic positions and radiologic procedures, ed 10, St Louis, 2003, Mosby.

Digital Radiography (DR)

- Referred to as "cassette-less" because the flat-panel detector is incorporated into the x-ray table or upright wall unit
 - Detector may be indirect or direct conversion
 - Images are ready for viewing within seconds

Ballinger PW, Frank ED: Merrill's atlas of radiographic positions and radiologic procedures, ed 10, St Louis, 2003, Mosby.

Digital Imaging Terms

- Viewing monitor and image
 - Matrix
 - Pixel
- Spatial resolution the larger the matrix and the smaller the pixels, the greater the spatial resolution
- Contrast resolution ability to distinguish anatomical structures of similar subject contrast
- Dynamic range range of exposures; DR provides wider range of exposures
- Signal-to-noise ratio (SNR) how adequately the digital system converts x-rays into image

Digital Processor Functions

- Window level
 - Controls brightness (density)
- Window width
 - Controls contrast
- Shuttering
 - Should never be substituted for proper collimation
- Image stitching
 - "stitching" multiple images together
- Image annotation
 - Adding text
- Edge enhancement
 - makes image appear sharper and increases contrast, but introduces some noise

Exposure Technique Charts

- Ability to manipulate the computer image contrast and density does not eliminate the need for technique charts
- Use technique charts to select mA, kVp, and time to avoid unnecessary patient exposure
- Practice ALARA
- Select correct kVp
- Unethical to set exposure too high to avoid a repeat

Exposure Indicators

- How much exposure is absorbed in the phosphors
- Varies by manufacturer:
 - > Fuji, Philips, Konica S or sensitivity number
 - Carestream exposure index (EI)
 - Agfa log of median exposure (lgM)

Post-processing

- Commom post-processing techniques
 - Subtraction permits viewing of bone only or tissues only
 - Contrast enhancement adjusts contrast from very high to very low
- DICOM Digital Imaging and Communications in Medicine

Picture Archival and Communication System

(PACS)

- PACS used to manage images
- PACS network consists of:
 - Computers
 - Servers
 - Archives

Artifacts

- Common artifacts include:
 - Quantum mottle caused by inadequate exposure technique
 - Moire pattern grid lines not aligned with laser scanner of CR reader
 - Light spots caused by dust or foreign material
 - Phantom/ghost images incomplete IP erasure
 - Scratches or tears damaged CR plates
 - Extraneous line patterns caused by noise
 - Fogging caused by background or scatter radiation

Digital Imaging System Technical Considerations

- Kilovoltage
 - May be slightly higher than that used for conventional radiography
- Centering
 - Body part of interest must be placed in or near the center of the detector
- Multiple exposures on one cassette
 - Although not recommended, if IR is divided for two separate exposures, the portion not being exposed must be covered with a lead shield

Digital Imaging System Technical Considerations (Cont' d)

- Over- and underexposure
 - Degree of image density is not an accurate indicator of overor underexposure
 - Density may be indicated by a unique number that correlates to the amount of exposure
- Collimation
 - Limit the field of radiation to the anatomy of interest
 - Inadequate collimation can result in inappropriate contrast

Digital Imaging System Technical Considerations (Cont'd)

- Open cassettes
 - An exposed IR begins to lose the image within 15 seconds of opening the IR
- Grids
 - Digital systems are more sensitive to scatter radiation
 - Use grids as appropriate
 - Display Monitor Quality Assurance
 - QC tests often performed by trained radiographers or a physicist

Summary

- With CR and DR, the image is produced, processed, viewed, and stored on a computer
- CR uses an IR and requires a reader to process the image
- DR is a cassette-less process that produces an image within seconds
- Use technique charts to select exposure factors

Summary (Cont'd)

- The appearance of digital images can be manipulated during and after processing
- PACS is a network used to manage the images obtained through DR
- DR technical considerations include kilovoltage, part centering, number of exposures per IR, over- and underexposure, cassette integrity, and collimation