Chapter 6

X-ray Circuit and Tube Heat Management

Learning Objectives

- Given an unlabeled x-ray circuit diagram, label the principle parts and state the function of each
- Explain what is meant by rectification and compare the basic types
- Describe the voltage waveform for each of the following types: unrectified, half-wave rectified, full-wave rectified

Learning Objectives

- List the primary features of all x-ray control panels and discuss the principal differences between conventional and computerized control consoles
- Describe the components of the automatic exposure control system
- List five possible causes of x-ray tube failure and describe methods to prevent each

X-ray Circuit Sections

- Low Voltage
 - Supplies low voltage for operation of control console and for kVp selection
- Filament
 - Supplies and controls heat needed for x-ray tube filament thermionic emission
- High Voltage
 - Supplies high voltage to accelerate electrons for x-ray production

Low-Voltage Circuit Portion

- 1 = AC power source provides electrical power
- 2 = Main switch controls the power to the control console
- 3 = Autotransformer primary purpose is to vary the voltage to the primary side of step up transformer
- 4 = kVp selector
- 5 = Exposure switch closes the circuit allowing current to flow through the primary side of step-up transformer
- 6 = Exposure timer terminates the exposure
- 7 = Primary side of step-up transformer
- 9 = Contacts for autotransformer

kVp meter – measures the voltage output from the autotransformer

Filament Circuit

The purpose of the filament circuit is to supply a low current and control the heat required by the x-ray tube filament for thermionic emission of electrons

10 = mA selector – also called a rheostat; controls the amperage

11 = Primary side of step-down transformer

12 = Secondary side of step-down transfor

13 = X-ray tube filament

*Step-down transformer = decreases Voltage, increases amperage

High-Voltage Circuit

8 = Secondary side of step-up transformer

14 = X-ray tube

15 = Rectifier - changes AC (alternating current) into DC (direct current)

mA meter = Milliammeter – measures the current flowing in the high-voltage circuit during an exposure

*Current flows in this circuit only during an exposure

*Step-up transformer = increases voltage

Complete X-ray Circuit

Transformers in an X-ray Circuit

- 3 Transformers in an x-ray circuit
- •Autotransformer varies the voltage to the primary side of the step-up transformer
- •Step-down transformer decreases voltage
- •Step-up transformer –increases the incoming voltage

Rectification

- Changes AC to DC so that current can flow through the x-ray tube's vacuum
- Types
 - Half-wave rectification uses two diodes
 - Full-wave rectification employs four diodes; utilizes entire electric cycle

AC in U.S. and Canada: 60 cycles/sec (60 Hz)

Comparison of half- and full-wave rectification

X-ray Generators

- Single-phase
 - Results in a pulsating x-ray beam
- Three-phase
 - Major advantage is that it is more efficient and produces approximately 40% more x-rays than single-phase
- High-frequency (HF)
 - 60 Hz transformed to 6,000 Hz
 - Most efficient at producing x-rays

Control Panel

- Used to select mA, kVp, exposure time, and focal spot size
- Conventional
 - Knobs and switches used to set exposure factors
 - Dials and meters indicate settings
- Computerized
 - Buttons used to set exposure factors
 - Digital readouts indicate settings
 - May be APR or anatomically programmed

Computerized Control Panel

Ballinger PW, Frank ED: Merrill's atlas of radiographic positions and radiologic procedures, ed 10, St Louis, 2003, Mosby.

Automatic Exposure Control

- AEC automatically terminates the exposure time when the appropriate amount of radiation has been detected at the IR
- Types
 - Phototimers
 - Ionization chambers

Automatic Exposure Control

- AEC detectors
 - Selection corresponds to body part and IR size
 - Examples: use center detector for knee and the two upper detectors for chest and/or lungs

Automatic Exposure Control

- Backup Time
 - Prevents overexposure by setting a maximum exposure time should the AEC fail to terminate the exposure
 - Is set manually by operator
 - Set backup time at 150% of anticipated exposure time

Anatomically Programmed Radiography Control (APR)

- APR
 - Most widely used electronic technique for exposure control
 - Microprocessor controls the exposure technical factors
 - The exposure technique chart is stored in the computer memory
 - By selecting one or two controls the remaining controls will be selected automatically

Making an Exposure

- Types of Switches
 - Hand held
 - Button or toggle

re Control

Release

X-Ray

Reset

+1

+2

+3

+4

- Activating Switches
 - Rotor
 - Exposure

Prolonging X-ray Tube Life

- Warm up cold x-ray tubes according to manufacturer instructions before use
- Do not prolong rotor time
- Avoid making a rapid series of exposures
- Consult the manufacturer's tube rating chart before making an exposure that might exceed the tube's heat loading

Tube Rating Charts

Indicate maximum exposure values that can be used safely

Heat Unit (HU) Formulas

The maximum heat capacity of the anode is rated in heat units (HU):

- Single-phase: HU = mA x Time x kVp
- □ Three-phase: $HU = mA \times Time \times kVp \times 1.35$
- □ High-frequency: $HU = mA \times Time \times kVp \times 1.40$

Summary

- The three sections of the x-ray circuit are low-voltage, filament, and high-voltage
- Rectifiers change AC to DC
- Types of rectifiers include half-wave, full-wave, threephase, and high-frequency

Summary

- Control panels may be conventional or computerized and are used to select mA, kVp, exposure time, and focal spot size
- AEC automatically terminates the exposure when the appropriate amount of radiation has been detected at the IR
- Many causes of tube failure such as excessive and rapid exposures and prolonged rotoring can be controlled by the limited operator