Chapter 10

Formulating X-Ray Techniques

Learning Objectives

- Read and use an x-ray technique chart
- List methods for obtaining and/or creating an x-ray technique chart
- Accurately measure a body part using an xray caliper
- Compare fixed kilovolts peak (kVp) technique charts with variable kVp technique charts and state which is preferable

Learning Objectives (Cont'd)

- Explain what is meant by optimum kVp and how this value is determined
- Select an appropriate milliamperage station for a given set of circumstances
- Take appropriate steps when the technique chart fails to provide an appropriate exposure

Learning Objectives (Cont'd)

- Calculate exposure adjustments for changes in patient/part size
- Determine the technique change required when radiographs are too dark or too light
- Suggest appropriate technique changes for increasing or decreasing the scale of contrast
- Calculate technique changes for variation in source-image receptor distance

Technique Charts

- Contain information on:
 - Type of examination and projection
 - Patient measurement in cm
 - Digital exposure index
 - > SID
 - kVp
 - > mA
 - Exposure time
 - Grid usage

Technique Charts (Cont'd)

- Used to select exposure factors
- Each chart is unique to a particular x-ray machine
- Technique charts may be generated by
 - Film manufacturers
 - Technologists

Adjusting an Existing Technique Chart

- When the technique chart is not producing images with appropriate contrast and density:
 - Check x-ray machine calibration and digital processor systems
 - Ensure that all personnel are using the chart properly
 - Make changes to the technique chart only after ensuring all factors that could affect the techniques have been evaluated

Patient Measurement

- Use of a technique chart requires accurate patient measurement
 - Sandwich the body part between the lower and upper caliper jaws
 - Place the jaws directly against the body part
 - Do not compress the body part with the calipers
 - Measure the body part in the position that the exposure will be taken

Fixed and Variable kVp Technique Charts

- Fixed kVp
 - Optimum kVp for each projection is determined and remains constant
 - mAs is adjusted according to patient thickness
 - Results in greater exposure latitude

- Variable kVp
 - mAs for each body part remains the same
 - Adjustments of 2 to 3 kVp for each cm change in patient size
 - Results in lower image contrast

Optimum kVp

- Refers to the kVp that produces appropriate image contrast
- Determined by taking a series of phantom images in which kVp and mAs are varied
 - Adjust kVp using the 15% rule
 - When kVp is decreased by 15%, double the mAs to maintain density

Milliamperage Selection

- Different mA and time combinations may produce the same mAs
 - Example: $300 \text{ mA} \times 0.1 \text{ sec} = 30 \text{ mAs}$ $150 \text{ mA} \times 0.2 \text{ sec} = 30 \text{ mAs}$
- Choice of mA depends on
 - Tube rating
 - Focal spot size
 - Exposure time
 - Available mA settings

Technique Adjustment

- Patient Size
 - Increase mAs 30% for each 2-cm increase
 - Decrease mAs 20% for each 2-cm decrease
- Insufficient and Excessive Density
 - Increase mAs 100% when density is insufficient
 - Decrease mAs 50% when density is excessive

Technique Adjustment (Cont'd)

- Contrast Too Low
 - Decrease kVp by 15% and increase mAs by 100% to maintain density
- Contrast Too High
 - Increase kVp by 15% and decrease mAs by 50% to maintain density

Technique Adjustment (Cont'd)

- Variations in SID affect density
- Use formula to
 - Increase mAs when SID is increased
 - Decrease mAs when SID is decreased

$$mAs_1 = (SID_1)^2$$

 $mAs_2 = (SID_2)^2$

```
mAs_1 = Original mAs

mAs_2 = New mAs

SID_1 = Original distance

SID_2 = New distance
```

Compensating Filters

 Placed between the x-ray tube and patient to achieve consistent radiographic density for body parts that vary in thickness, such as the thoracic spine

Compensating Filters (Cont'd)

- Types of filters
 - Wedge
 - > Trough
 - Boomerang
 - Ferlic for shoulder
 - Ferlic for cervicothoracic region

Summary

- Technique charts provide sets of exposure factors according to body part and patient size
- Make changes to the technique chart only after ensuring all factors that could affect the techniques have been evaluated
- Measurements needed to create technique charts are obtained using calipers

Summary (Cont'd)

- Technique charts are either fixed or variable kVp
- For any type of technique chart, the optimum kVp or the kVp that will produce appropriate image contrast must be determined
- mA selection depends on tube rating, focal spot size, exposure time, and available mA settings

Summary (Cont'd)

- Exposure time affects density and can be calculated by dividing the mA by the mAs
- Increase mAs when patient size increases or the density is insufficient
- Decrease mAs when patient size decreases or the density is excessive
- Decrease kVp to obtain a shorter scale or higher contrast

Summary (Cont'd)

- Increase kVp to obtain a lower or longer scale of contrast
- To maintain density when SID is increased, increase mAs
- Compensating filters are placed between the x-ray tube and patient to achieve consistent radiographic density for body parts that vary in thickness