Chapter 4

Basic Physics for Radiography

Learning Objectives

- Define matter and list its three forms
- Name the fundamental particles of the atom and list characteristics of each
- Draw or describe a conceptual model of atomic structure
- List and describe five forms of energy
- Draw a sine wave and measure its amplitude and its wavelength

Learning Objectives

- Relate the wavelength of a sine wave to its velocity and frequency
- Compare and contrast the characteristics of xrays with the characteristics of visible light
- Explain the relationship between potential difference, current, and resistance in an electric circuit and state the units used to measure each

Learning Objectives

- State the frequency of alternating current in the United States and Canada using the correct units
- Describe the process of electromagnetic induction
- Draw simple diagrams of step-up and stepdown transformers

Matter

- Can take the forms of:
 - Solid
 - Liquid
 - Gas
- Mass = the amount of matter in an object

Atoms

- Compose all matter
- Consist of
 - Protons
 - Neutrons
 - Electrons

Atoms

- Protons
 - Positively charged
 - Reside in nucleus
- Neutrons
 - No charge
 - Reside in nucleus
- Electrons
 - Negative charge
 - Orbit the nucleus in shells or energy levels
 - Shells contain a specific number of electrons

Clicker Question

The negatively charged particles orbiting around the nucleus of an atom are:

- a) protons
- b) neutrons
- c) electrons

Atoms

- May be
 - Neutral
 - Contain the same number of protons and electrons
 - Ionized
 - Contain a greater or lesser number of electrons than protons

Energy

- Ability to do work
- Classifications include:
 - Mechanical
 - Chemical
 - Thermal
 - Nuclear
 - Electric
 - Electromagnetic

Electromagnetic Energy

- Includes light, x-rays, radio waves, and microwaves
- Travel in sine waves characterized by:
 - Amplitude (height) or distance between the wave crest and trough
 - Wavelength or distance from crest to crest
 - Frequency or number of crests per second passing a given point

Clicker Question

The distance between the crest and trough of an electromagnetic energy wave is termed:

- a) wavelength
- b) frequency
- c) amplitude

Electromagnetic Energy

- Velocity is constant (186,000 miles/sec)
- Wavelength and frequency vary
- Short wavelength = high frequency and energy
- Long wavelength = low frequency and energy

Clicker Question

Short wavelength electromagnetic energy has:

- a) low frequency and energy
- b) high frequency and energy
- c) low frequency and high energy
- d) high frequency and low energy

Characteristics of X-rays and Visible Light

- X-rays and Visible Light
 - Travel in straight lines at 186,000 miles/sec
 - Affect photographic emulsions
 - Can cause harmful biologic effects
- X-rays
 - Cannot be detected by human senses
 - Can penetrate matter
 - Can cause certain materials to fluoresce

Electricity

- Used to produce x-rays
- Electric Current
 - Number of negative electrons flowing toward a positive charge
 - Circuit is the path over which electrons move
 - Current is represented by the letter I
 - Measurement unit = ampere (A)

Electricity

- Electrical Resistance
 - Anything that hinders the electron flow or current
 - Amount depends on conductor material, length, diameter, and temperature
 - Measurement unit = ohm (Ω)
- Potential Difference
 - Strength of electron flow or current
 - Measurement unit = volt (V)

Clicker Question

The unit of measurement for electric current is the:

- a) ampere
- b) ohm
- c) volt

Types of Circuits

Series

Devices such as an ammeter are wired directly into the circuit

Parallel

 Devices such as the voltmeter are wired across the circuit so that electric potential between two points can be measured

Types of Currents

- Direct (DC)
 - Current flows at a constant rate in one direction from the positive pole (anode) to the negative pole (cathode)
- Alternating (AC)
 - Current flow changes or alternates directions at a rate of 60 cycles per second or 60 hertz (Hz) in the USA and Canada
 - Process of rectification changes AC to a pulsating DC

Clicker Question

Alternating current operates at:

- a) 120 Hz
- b) 60 Hz
- c) 30 Hz
- d) 15 HZ

Electromagnetic Induction

 Moving a conductor within a magnetic field will produce an AC

 Moving a magnetic field across a conductor also produces AC

Electromagnetic Induction and Transformers

- Transformer coils use electromagnetic induction to vary the amount of voltage
- Voltage changes affect the amount of current or amperage
- Step-up transformers increase voltage and decrease amperage
- Step-down transformers decrease voltage and increase amperage

- Matter takes the form of a solid, liquid, or gas
- All matter is made up of atoms that contain protons, neutrons, and electrons
- When an atom has more or fewer electrons than protons it is an ion or charged atom

- X-rays are a form of electromagnetic energy
- X-ray strength depends on its wavelength and frequency
- Even though human senses cannot detect xrays, they are capable of producing biologic effects

- Electricity is used to produce x-rays
- Characteristics of electricity include current, resistance, and potential difference
- Circuit elements may be arranged in series or parallel
- Current is direct or alternating
- Alternating current in the US and Canada is 60 Hz

- Electromagnetic induction uses movement between the conductor and magnetic field to produce AC
- Transformers coils employ electromagnetic induction to increase or decrease the voltage in the x-ray circuit