Chapter 6

X-ray Circuit and Tube Heat Management

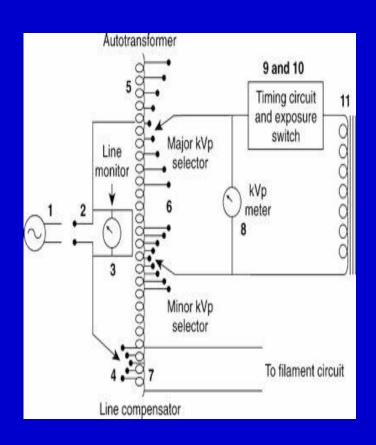
Learning Objectives

- Given an unlabeled x-ray circuit diagram, label the principle parts and state the function of each
- Explain what is meant by rectification and compare the three basic types
- Draw the voltage waveform for each of the following types: unrectified, half-wave rectified, full-wave rectified, three-phase rectified, and high frequency

Learning Objectives

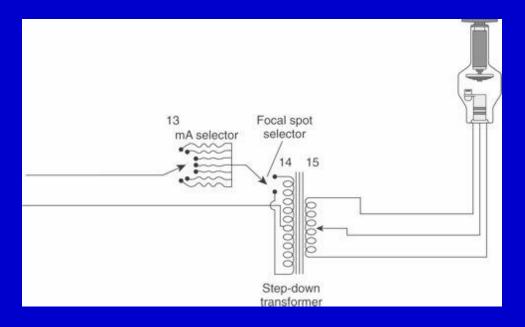
- List the primary features of all x-ray control panels and discuss the principal differences between conventional and computerized control consoles
- Describe the components of the automatic exposure control system
- List five possible causes of x-ray tube failure and describe methods to prevent each

X-ray Circuit Sections


- Low Voltage
 - Supplies low voltage for operation of control console and for kVp selection
- Filament
 - Supplies and controls heat needed for x-ray tube filament thermionic emission
- High Voltage
 - Supplies high voltage to accelerate electrons for xray production

The high-voltage x-ray circuit supplies voltage for:

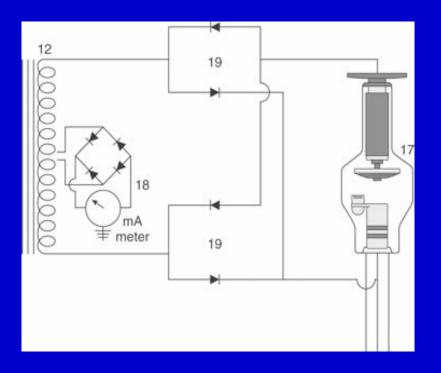
- a) kVp selection
- b) filament heating
- c) acceleration of electrons for x-ray production


Low-Voltage Circuit Portion

- 1 = AC power source
- 2 = Main switch
- 3 = Line meter
- 4 = Line voltage compensator
- 5 = Autotransformer
- 6 = kVp selector
- 7 = Contacts for autotransformer
- 8 = kVp meter
- 9 = Exposure switch
- 10 = Exposure timer
- 11 = Primary of step-up transformer

Filament Circuit

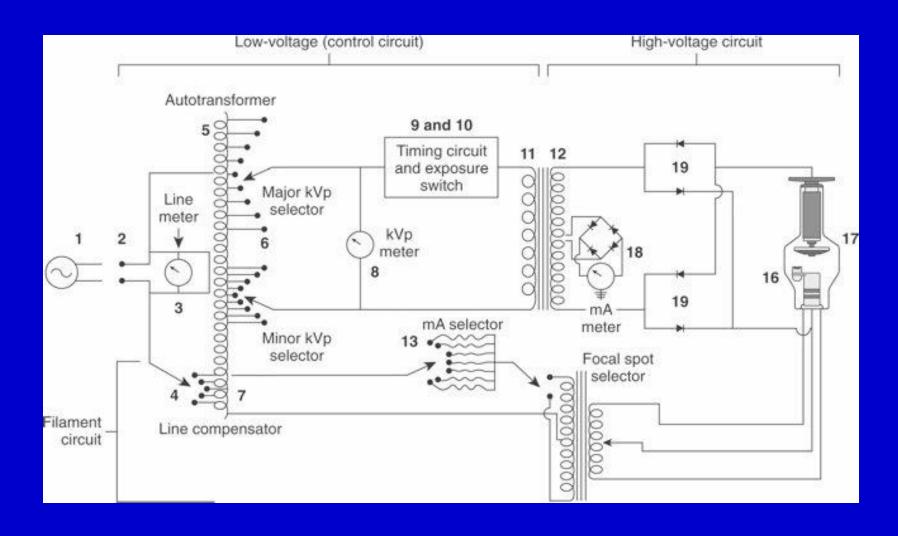
- 13 = mA selector
- 14 = Primary of step-down transformer
- 15 = Secondary of step-down transformer
- 16 = X-ray tube filament


High-Voltage Circuit

12 = Secondary of step-up transformer

17 = X-ray tube

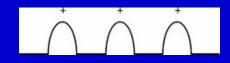
18 = Milliammeter


19 = Rectifier

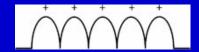
The low-voltage circuit contains the:

- a) rectifier
- b) mA selector
- c) exposure timer
- d) step-down transformer

Complete X-ray Circuit



Rectification


- Directs current flow through the x-ray tube so electrons flow from filament to target
- Types
 - Half-wave
 - Full-wave
 - Three-phase
 - High-frequency

Rectification Waveforms

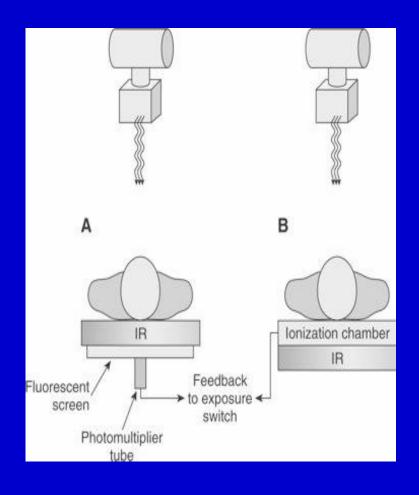
Half-wave

Full-wave

Three-phase

High-frequency

Rectification that uses the entire electric cycle for the production of x-rays is termed:

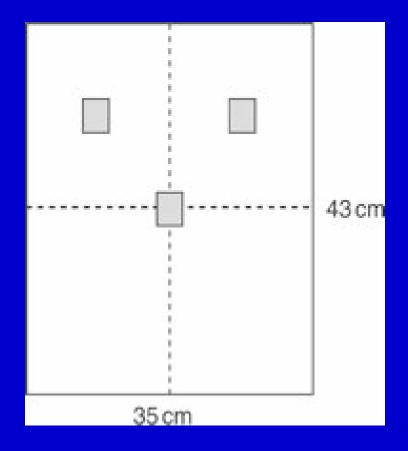

- a) self
- b) half-wave
- c) full-wave

Control Panel

- Used to select mA, kVp, exposure time, and focal spot size
- Conventional
 - Knobs and switches used to set exposure factors
 - Dials and meters indicate settings
- Computerized
 - Buttons used to set exposure factors
 - Digital readouts indicate settings
 - May be APR or anatomically programmed

Automatic Exposure Control

- AEC automatically terminates the exposure when the appropriate amount of radiation has been detected at the IR
- Types
 - Phototimers
 - Ionization chambers


The phototimer type of automatic exposure control is sensitive to:

- a) x-rays
- b) light
- c) electrons

Automatic Exposure Control

AEC detectors

- Selection corresponds to body part and IR size
- Examples: use center detector for knee and the two upper detectors for lungs

Automatic Exposure Control

Backup Time

- Prevents overexposure by setting a maximum exposure time should the AEC fail to terminate the exposure
- Set backup time at 150% of anticipated exposure time

Making an Exposure

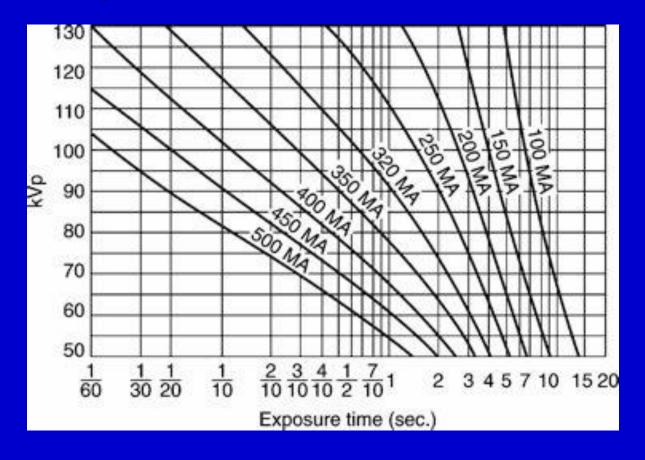
- Types of Switches
 - Hand held
 - Button or toggle

- Activating Switches
 - Rotor
 - Exposure

Causes of X-ray Tube Failure

- Failure may be caused by:
 - Making exposures with a cold tube
 - Making a rapid series of large exposures
 - Worn rotor bearings
 - Filament breakage caused by vaporization

Prolonging X-ray Tube Life


- Warm up cold x-ray tubes according to manufacturer instructions before use
- Do not prolong rotor time
- Avoid making a rapid series of exposures
- Consult the manufacturer's tube rating chart before making an exposure that might exceed the tube's heat loading

Activating the rotor before you are ready to make an exposure shortens x-ray tube life from prolonged heating of the:

- a) tube housing
- b) target
- c) filament

Tube Rating Charts

Indicate maximum exposure values that can be used safely

Summary

- The three sections of the x-ray circuit are lowvoltage, filament, and high-voltage
- Rectifiers direct current flow so that it is from filament to target
- Types of rectifiers include half-wave, fullwave, three-phase, and high-frequency

Summary

- Control panels may be conventional or computerized and are used to select mA, kVp, exposure time, and focal spot size
- AEC automatically terminates the exposure when the appropriate amount of radiation has been detected at the IR
- Many causes of tube failure such as excessive and rapid exposures and prolonged rotoring can be controlled by the limited operator