Chapter 7

Principles of Exposure and Image Quality

Learning Objectives

- List the prime factors of exposure
- State the formula for determining milliampereseconds (mAs) and explain how this unit is useful to the radiographer
- Explain the radiographic effect of the four prime factors of exposure
- Define radiographic distortion and explain the difference between magnification and shape distortion

Learning Objectives

- Recognize changes in radiographic density and state the exposure factors used to control radiographic density
- Identify high, low, and optimum contrast on a radiograph and state the exposure factor that primarily controls radiographic contrast

Learning Objectives

- Define recorded detail and list factors that influence it
- List and explain the geometric factors that affect recorded detail and explain why magnification affects detail
- List and discuss methods for minimizing motion blur on radiographs

- Milliamperage (mA)
 - Affects the exposure rate or number of x-ray photons produced per second
 - Exposure is directly proportional to mA
 - Doubling mA results in a doubling of the number of electrons used to produce the x-ray beam
 - Halving mA results in a halving of the number of electrons used to produce the x-ray beam

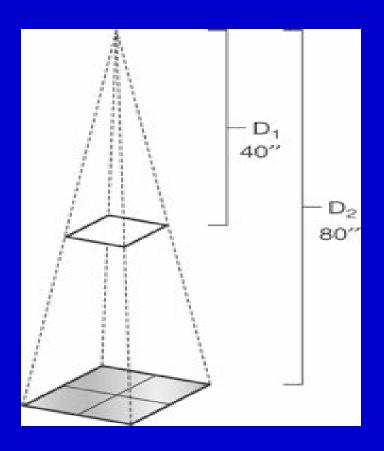
- Exposure Time
 - Controls how long the exposure lasts
 - Exposure is directly proportional to the exposure time
 - Doubling or halving exposure time results in a doubling or halving of the number of electrons used to produce the x-ray beam respectively

- Milliampere-seconds (mAs)
 - Indicates total number of x-rays in an exposure
 - Exposure and patient dose are directly proportional to mAs
 - Product of mA and time

 $mA \times time = mAs$

200 mA \times 0.05 seconds = 10 mAs

Which mA and time combination produces the greatest number of x-rays?


- a) 200 mA and 0.1 seconds
- b) 200 mA and 0.2 seconds
- c) 100 mA and 0.3 seconds
- d) 100 mA and 0.5 seconds

- Kilovoltage (kVp)
 - Controls the wavelength and energy of the x-ray beam
 - Energy is related to the ability of the x-rays to penetrate the patient and reach the IR
 - Increasing or decreasing kVp increases or decreases the wavelength, energy, and penetration of the x-ray beam respectively, but not in direct proportion

Which kVp will result in the most penetration?

- a) 60 kVp
- b) 80 kVp

- Source Image Receptor Distance (SID)
 - X-rays diverge or spread as they exit the tube
 - Amount of divergence depends on length of the SID and affects the intensity of the x-ray beam

Which SID will result in the smaller radiation field?

- a) 40"
- b) 72"

 The inverse square law states that radiation intensity is inversely proportional to the square of the distance

$$I_1 = (D_2)^2$$

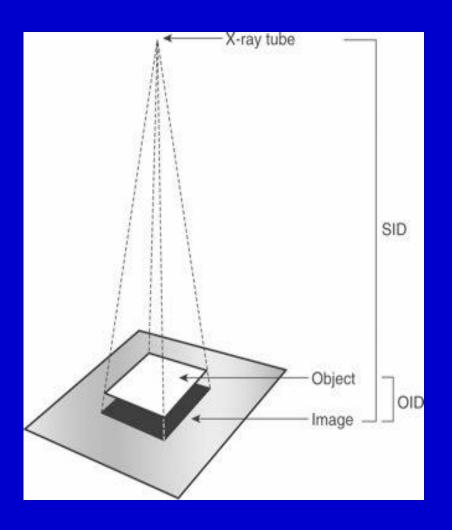
$$I_2 = (D_1)^2$$

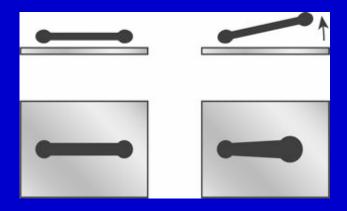
$$I_1$$
 = Original Intensity
 I_2 = New Intensity
 D_1 = Original SID
 D_2 = New SID

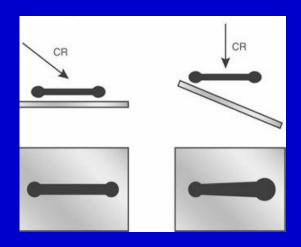
If the radiation intensity at 30" is 10 mR, what will the intensity be at 60"?

- a) 40 mR
- b) 20 mR
- c) 5 mR
- d) 2.5 mR

- Density or overall blackness of the radiograph
 - Affects visibility of image detail
 - Is primarily controlled by mAs, although kVp and SID also influence density


- Contrast or difference in density between adjacent areas of the image
 - Visibility of detail is affected
 - kVp is primary controller
 - Subject contrast is the variation in beam intensity after it passes through the patient
 - Radiographic contrast is the combination of IR and subject contrast
 - Fog from scatter radiation or image processing can reduce contrast


Contrast


- Optimal contrast may be high or low depending on the composition of the body part
- Low contrast = less difference between densities
- High contrast = greater difference between densities

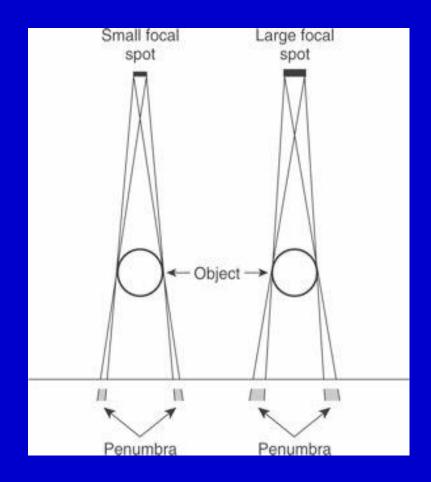
- Size Distortion or Magnification
 - Anatomic part appears larger than it actually is
 - Affected by
 - SID
 - OID

- Shape Distortion or Unequal Magnification
 - Length or shape of anatomy is misrepresented
 - May be caused when body part is not parallel to the IR or when the CR is angled

Recorded Detail

- Refers to image clarity
- Affected by
 - Motion
 - Quantum mottle
 - Focal spot size
 - Intensifying screen and film speed
 - Film/screen contact
- Also referred to as resolution, sharpness, definition, or detail

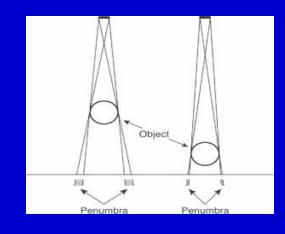
A radiographic image with quantum mottle:


- a) is grainy
- b) has more density
- c) has less density

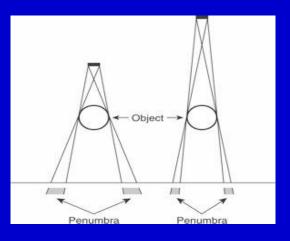
Geometric Factors

- Factors
 - SID
 - OID
 - Focal spot size
- Use factors to reduce penumbra or image blur

Geometric Factors


- Focal Spot Size
 - Small focal spots
 produce less
 penumbra, resulting
 in a sharper image

Geometric Factors


OID

 Reducing the distance between the object and IR decreases penumbra

SID

 Increasing the distance between the radiation source and IR decreases penumbra

 Use the shortest OID and longest SID practical

Other Factors Affecting Image Detail

- Motion
 - Movement of the patient, IR, and x-ray tube will cause blurring
- Intensifying Screen Speed
 - Faster screen speeds produce quantum mottle or grainy appearing images
- Film/Screen Contact
 - Gaps between the intensifying screen and film result in image blur

Which screen speed produces the best recorded detail?

- a) fast
- b) slow

Summary

- The prime exposure factors are milliamperage, exposure time, mAs, and SID
- The prime exposure factors are manipulated to control the radiographic quality factors density, contrast, and distortion

Summary

- Recorded detail refers to the image clarity
- Penumbra is the inherent blurriness in the radiographic image
- Penumbra may be reduced and image sharpness increased by using the appropriate SID, OID, and focal spot size
- Image sharpness may also be affected by motion, intensifying screen speed, and film/screen contact