CLASSIFICATION OF LIVING THINGS

Classification:

The grouping of organisms based on similarities

Allows us to study relationships between species

- Helps us assign names to organisms
- Taxonomy = a branch of Biology that groups and names organisms based in different characteristics.

Aristotle (384-322BC)

He classified organisms into two categories:

Plants

- × Herbs
- × Shrubs
- × Trees

Animals

- × Land
- × Water
- × Air

Carolus Linnaeus (1707-1778)

Born Carl von Linne, but renamed himself with a *scientific*

 Devised a system for grouping and giving names to all organisms.

- Used physical and structural characteristics to classify organisms.
- Subdivided into smaller and more specific groups
- Chose Latin as the language for assigning the names.

Binomial Nomenclature

(The Linnaean system of naming

- Two name ("binomial") naming system Example:
 Homo sapiens
- First name is the genus (Ex. Homo)
 - ★ Group of similar species
 - Capitalized
- Second name is the species (Ex. sapiens)
 - Descriptive name
 - × Lower case

Example Acer rubrum (Red maple)

- Acer = genus including all maple trees
- × rubrum = red

- Always italicize or underline scientific names
- Names are always in Latin (genus can be abbreviated example below)

Acer rubrum or Acer rubrum

A. rubrum

A. rubrum

Taxonomic System

taxa.

```
Kingdom - largest, most general group
Phylum
Class
Order
Family
Genus
Species - smallest, most specific group
```


DKPCOFGS

- It helps to come up with a sentence using the first letter of each **taxon** (group) to help you remember them. For example-
- <u>Deprived King Philip Came Over For Great Spaghetti</u>
- <u>Danish Kings Play Cards On Fat Green Stools.</u>
- <u>Dead Kings Prefer Cheese on Fine Green Spinach</u>
- What's yours?????

Some scientists use a 3 domain system. Domains can BIGGER than kingdoms and are based on RNA relatedness

Domains	Kingdoms	
Bacteria	Eubacteria	formerly "Monera"
Archaea	Archaebacteria	
Eukarya	Protista	
	Fungi	
	Plantae	
	Animalia	

(Unicellular, prokaryotic)

(Unicellular, prokaryotic)

How are taxonomic relationships determined?

Bases for modern classification

- Structural similarities
- Potential to mate
- Geographical distribution
- Chromosomes # and structure
- Biochemistry DNA base sequence
- Evolutionary relationship in the fossil record --- phylogeny

Dichotomous Key

- Chart of paired statements used to identify an organism; two part questions usually labeled a and b
- ALWAYS start at question 1 and proceed until you identify the specific organism's name
- Follow the directions at the end of the a or b statement that best describes the organism you are attempting to identify

DICHOTOMOUS KEY EXAMPLE

1A	Object has only straight lines, go to 2	
1B	Object has curved line, go to 4	
2A	Color is blue Azul calamus	
2B	Color is not blue, go to 3	
3A	Object has four equal sides Quadratis rufus	
3B	Opposite sides of object are equal Rectangulo crudus	
4A	Object has one continuous curving line, go to 5	
4B	Object has curved and straight linesAzul undo	
5A	Object is redOvalado rufus	
5B	Object is greenOrbis crudus	

