Java Games: Flashcards, matching, concentration, and word search.

Angles, Triangles, Lines and Figures

AB
An angle less than 90 degrees, Acute angle
A 90 degree angle, Right angle
The sum of two angles is 180 degrees, Supplementary angle
The sum of the interior angles of a triangle is 180 degrees, Triangle Sum Theorem
A triangle with two equal sides, Isosceles triangle
A triangle with three equal sides, Equilateral triangle
A triangle with all different side lengths, Scalene triangle
Two angles that share a ray/side and a vertex/point, Adjacent angles
Two lines that interact at 90 degrees, Perpendicular lines
An angle that is 180 degrees, Straight angle
Two identical figures, Congruent figures
Formed by two rays with a common vertex/point., angle
An angle that is greater than 90 degrees but less than 180 degrees, Obtuse angle
Two angles whose sum is 90 degrees, Complementary angles
Two lines on a plane that never interset, Parallel lines
A line that intersects two or more lines that lie in the same plane, Transversal
The sum of the lengths of any two sides of a triangle is greater than the length of the third side, Triangle Inequality Theorem
The point that divides a segment into two congruent segments, Midpoint
A way of matching up two sets of figures, Correspondence
A change in a figure's position, Transformation
A figure that slides along the line without turning, Translation
A figure that flips across a line, Reflection
A figure that turns, Rotation
A point that a figure is turned on, Center of rotation
The result of a transformation, translation, reflection or rotation, Image
Transformation that results in a same size image, Congruence transformation
Transformation that results in a similar image, Similarity transformation
A triangle with three acute angles, Acute triangle
Two angles that are equal, Congruent angles
A triangle with a right angle, Right triangle
Two angles that share a common vertex and same measurement, Vertical angles


Seoul Foreign Elementary School
Seoul, South Korea

This activity was created by a Quia Web subscriber.
Learn more about Quia
Create your own activities